170 research outputs found

    Accreting Protoplanets in the LkCa 15 Transition Disk

    Full text link
    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{\alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item

    Genomics accelerated isolation of a new stem rust avirulence gene - wheat resistance gene pair

    Get PDF
    Stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt) is a devastating disease of the global staple crop wheat. Although this disease was largely controlled by genetic resistance in the latter half of the 20th century, new strains of Pgt with increased virulence, such as Ug99, have evolved by somatic hybridisation and mutation. These newly emerged strains have caused significant losses in Africa and other regions and their continued spread threatens global wheat production. Breeding for disease resistance provides the most cost-effective control of wheat rust diseases. A number of race-specific rust resistance genes have been characterised in wheat and most encode immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class. These receptors recognize pathogen effector proteins often known as avirulence (Avr) proteins. However, only two Avr genes have been identified in Pgt to date, AvrSr35 and AvrSr50 and none in other cereal rusts, which hinders efforts to understand the evolution of virulence in rust populations. The Sr27 resistance gene was first identified in a wheat line carrying an introgression of the 3R chromosome from Imperial rye. Although not deployed widely in wheat, Sr27 is widespread in the artificial crop species Triticosecale (triticale) which is a wheat-rye hybrid and is a host for Pgt. Sr27 is effective against Ug99 and other recently emerged Pgt strains. Here we identify both the Sr27 gene in wheat and the corresponding AvrSr27 gene in Pgt and show that virulence to Sr27 can arise experimentally and in the field through deletion mutations, copy number variation and expression level polymorphisms at the AvrSr27 locus

    Monitoring Voltage-Dependent Charge Displacement of Shaker B-IR K+ Ion Channels Using Radio Frequency Interrogation

    Get PDF
    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu2+ addition to the external bath. Cu2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains — capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug–protein interactions

    Factors influencing nurses' compliance with Standard Precautions in order to avoid occupational exposure to microorganisms: A focus group study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nurses may acquire an infection during the provision of nursing care because of occupational exposure to microorganisms. Relevant literature reports that, compliance with Standard Precautions (a set of guidelines that can protect health care professionals from being exposed to microorganisms) is low among nurses. Additionally, high rates of exposure to microorganisms among nurses via several modes (needlesticks, hand contamination with blood, exposure to air-transmitted microorganisms) occur. The aim of the study was to study the factors that influence nurses' compliance with Standard Precaution in order to avoid occupational exposure to pathogens, by employing a qualitative research design.</p> <p>Method</p> <p>A focus group approach was used to explore the issue under study. Four focus groups (N = 30) were organised to elicit nurses' perception of the factors that influence their compliance with Standard Precautions. The Health Belief Model (HBM) was used as the theoretical framework and the data were analysed according to predetermined criteria.</p> <p>Results</p> <p>Following content analysis, factors that influence nurses' compliance emerged. Most factors could be applied to one of the main domains of the HBM: benefits, barriers, severity, susceptibility, cues to action, and self-efficacy.</p> <p>Conclusions</p> <p>Changing current behavior requires knowledge of the factors that may influence nurses' compliance with Standard Precautions. This knowledge will facilitate in the implementation of programs and preventive actions that contribute in avoiding of occupational exposure.</p

    Location, identity, amount and serial entry of chloroplast DNA sequences in crucifer mitochondrial DNAs

    Full text link
    Southern blot hybridization techniques were used to examine the chloroplast DNA (cpDNA) sequences present in the mitochondrial DNAs (mtDNAs) of two Brassica species ( B. campestris and B. hirta ), two closely related species belonging to the same tribe as Brassica (Raphanus sativa, Crambe abyssinica) , and two more distantly related species of crucifers (Arabidopsis thaliana, Capsella bursa-pastoris) . The two Brassica species and R. sativa contain roughly equal amounts (12–14 kb) of cpDNA sequences integrated within their 208–242 kb mtDNAs. Furthermore, the 11 identified regions of transferred DNA, which include the 5′ end of the chloroplast psa A gene and the central segment of rpo B, have the same mtDNA locations in these three species. Crambe abyssinica mtDNA has the same complement of cpDNA sequences, plus an additional major region of cpDNA sequence similarity which includes the 16S rRNA gene. Therefore, except for the more recently arrived 16S rRNA gene, all of these cpDNA sequences appear to have entered the mitochondrial genome in the common ancestor of these three genera. The mitochondrial genomes of A. thaliana and Capsella bursa-pastoris contain significantly less cpDNA (5–7 kb) than the four other mtDNAs. However, certain cpDNA sequences, including the central portion of the rbc L gene and the 3′ end of the psa A gene, are shared by all six crucifer mtDNAs and appear to have been transferred in a common ancestor of the crucifer family over 30 million years ago. 1n conclusion, DNA has been transferred sequentially from the chloroplast to the mitochondrion during crucifer evolution and these cpDNA sequences can persist in the mitochondrial genome over long periods of evolutionary time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46968/1/294_2004_Article_BF00521276.pd

    Tracking Cats: Problems with Placing Feline Carnivores on δ18O, δD Isoscapes

    Get PDF
    Several felids are endangered and threatened by the illegal wildlife trade. Establishing geographic origin of tissues of endangered species is thus crucial for wildlife crime investigations and effective conservation strategies. As shown in other species, stable isotope analysis of hydrogen and oxygen in hair (δD(h), δ(18)O(h)) can be used as a tool for provenance determination. However, reliably predicting the spatial distribution of δD(h) and δ(18)O(h) requires confirmation from animal tissues of known origin and a detailed understanding of the isotopic routing of dietary nutrients into felid hair.We used coupled δD(h) and δ(18)O(h) measurements from the North American bobcat (Lynx rufus) and puma (Puma concolor) with precipitation-based assignment isoscapes to test the feasibility of isotopic geo-location of felidae. Hairs of felid and rabbit museum specimens from 75 sites across the United States and Canada were analyzed. Bobcat and puma lacked a significant correlation between H/O isotopes in hair and local waters, and also exhibited an isotopic decoupling of δ(18)O(h) and δD(h). Conversely, strong δD and δ(18)O coupling was found for key prey, eastern cottontail rabbit (Sylvilagus floridanus; hair) and white-tailed deer (Odocoileus virginianus; collagen, bone phosphate).Puma and bobcat hairs do not adhere to expected pattern of H and O isotopic variation predicted by precipitation isoscapes for North America. Thus, using bulk hair, felids cannot be placed on δ(18)O and δD isoscapes for use in forensic investigations. The effective application of isotopes to trace the provenance of feline carnivores is likely compromised by major controls of their diet, physiology and metabolism on hair δ(18)O and δD related to body water budgets. Controlled feeding experiments, combined with single amino acid isotope analysis of diets and hair, are needed to reveal mechanisms and physiological traits explaining why felid hair does not follow isotopic patterns demonstrated in many other taxa

    Giant Planet Formation and Migration

    Get PDF
    © 2018, The Author(s). Planets form in circumstellar discs around young stars. Starting with sub-micron sized dust particles, giant planet formation is all about growing 14 orders of magnitude in size. It has become increasingly clear over the past decades that during all stages of giant planet formation, the building blocks are extremely mobile and can change their semimajor axis by substantial amounts. In this chapter, we aim to give a basic overview of the physical processes thought to govern giant planet formation and migration, and to highlight possible links to water delivery.S.-J. Paardekooper is supported by a Royal Society University Research Fellowship. A. Johansen is supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council (grant 2014-5775) and the European Research Council (ERC Starting Grant 278675-PEBBLE2PLANET)

    The evolution of the plastid chromosome in land plants: gene content, gene order, gene function

    Get PDF
    This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable

    Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture

    Get PDF
    Wild relatives of domesticated crop species harbor multiple, diverse, disease resistance (R) genes that could be used to engineer sustainable disease control. However, breeding R genes into crop lines often requires long breeding timelines of 5–15 years to break linkage between R genes and deleterious alleles (linkage drag). Further, when R genes are bred one at a time into crop lines, the protection that they confer is often overcome within a few seasons by pathogen evolution1. If several cloned R genes were available, it would be possible to pyramid R genes2 in a crop, which might provide more durable resistance1. We describe a three-step method (MutRenSeq)-that combines chemical mutagenesis with exome capture and sequencing for rapid R gene cloning. We applied MutRenSeq to clone stem rust resistance genes Sr22 and Sr45 from hexaploid bread wheat. MutRenSeq can be applied to other commercially relevant crops and their relatives, including, for example, pea, bean, barley, oat, rye, rice and maize
    corecore