60 research outputs found
A Sublattice Phase-Field Model for Direct CALPHAD Database Coupling
The phase-field method has been established as a de facto standard for
simulating the microstructural evolution of materials. In quantitative modeling
the assessment and compilation of thermodynamic/kinetic data is largely
dominated by the CALPHAD approach, which has produced a large set of
experimentally and computationally generated Gibbs free energy and atomic
mobility data in a standardized format: the thermodynamic database (TDB) file
format. Harnessing this data for the purpose of phase-field modeling is an
ongoing effort encompassing a wide variety of approaches. In this paper, we aim
to directly link CALPHAD data to the phase-field method, without intermediate
fitting or interpolation steps. We introduce a model based on the
Kim-Kim-Suzuki (KKS) approach. This model includes sublattice site fractions
and can directly utilize data from TDB files. Using this approach, we
demonstrate the model on the U-Zr and Mo-Ni-Re systems.Comment: 8 pages, 8 figure
Origin of broad luminescence from site‐controlled InGaN nanodots fabricated by selective‐area epitaxy
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106777/1/pssa201330362.pd
Initialization of Nanowire or Cluster Growth Critically Controlled by the Effective V/III Ratio at the Early Nucleation Stage
For self-catalyzed nanowires (NWs), reports on how the catalytic droplet initiates successful NW growth are still lacking, making it difficult to control the yield and often accompanying a high density of clusters. Here, we have performed a systematic study on this issue, which reveals that the effective V/III ratio at the initial growth stage is a critical factor that governs the NW growth yield. To initiate NW growth, the ratio should be high enough to allow the nucleation to extend to the entire contact area between the droplet and substrate, which can elevate the droplet off of the substrate, but it should not be too high in order to keep the droplet. This study also reveals that the cluster growth between NWs is also initiated from large droplets. This study provides a new angle from the growth condition to explain the cluster formation mechanism, which can guide high-yield NW growth
Influence of advanced age of maternal grandmothers on Down syndrome
BACKGROUND: Down syndrome (DS) is the most common chromosomal anomaly associated with mental retardation. This is due to the occurrence of free trisomy 21 (92–95%), mosaic trisomy 21 (2–4%) and translocation (3–4%). Advanced maternal age is a well documented risk factor for maternal meiotic nondisjunction. In India three children with DS are born every hour and more DS children are given birth to by young age mothers than by advanced age mothers. Therefore, detailed analysis of the families with DS is needed to find out other possible causative factors for nondisjunction. METHODS: We investigated 69 families of cytogenetically confirmed DS children and constructed pedigrees of these families. We also studied 200 randomly selected families belonging to different religions as controls. Statistical analysis was carried out using logistic regression. RESULTS: Out of the 69 DS cases studied, 67 were free trisomy 21, two cases were mosaic trisomy 21 and there were none with translocation. The number of DS births was greater for the young age mothers compared with the advanced age mothers. It has also been recorded that young age mothers (18 to 29 years) born to their mothers at the age 30 years and above produced as high as 91.3% of children with DS. The logistic regression of case- control study of DS children revealed that the odds ratio of age of grandmother was significant when all the four variables were used once at a time. However, the effect of age of mother and father was smaller than the effect of age of maternal grandmother. Therefore, for every year of advancement of age of the maternal grandmother, the risk (odds) of birth of DS baby increases by 30%. CONCLUSION: Besides the known risk factors, mother's age, father's age, the age of the maternal grandmother at the time of birth of the mother is a risk factor for the occurrence of Down syndrome
Governing shipping externalities : Baltic ports in the process of SOx emission reduction
This paper analyses the debate which has unfolded in the Baltic Sea Region regarding the reduction of sulphur content in vessel fuels, in order to illustrate how tightening environmental regulation challenges traditional forms of maritime governance. Using an interactive governance approach, this study reconstructs the process of sulphur emission reduction as a complex multi-stakeholder interaction in multiple contexts. The empirical investigation has drawn on documentary material from around the Baltic region, including Russia, and has applied the method of qualitative content analysis. The empirical study focuses on two interlinked questions: (1) How sulphur emission reduction policies are being anticipated by maritime industry, in particular by Baltic ports and (2) How port adaptation strategies are tied into Baltic local and energy contexts. Addressing these questions highlights the role of polycentricity in shipping governance and explains how the same universal international regulations can produce varying patterns of governance. The paper concludes that policy-making shall take an account of the fact that the globalized shipping industry is nevertheless locally and sectorally embedded.Peer reviewe
Origin of broad luminescence from site‐controlled InGaN nanodots fabricated by selective‐area epitaxy (Phys. Status Solidi A 3∕2014)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106741/1/pssa201470216.pd
First-Principles Comparative Study of UN and Zr Corrosion
We studied surface corrosion effects on Zr and UN using first-principles density functional theory-based calculations. We focused on the energetics of Zr (1000), UN (100) and UN (110) surfaces, exposed to water and oxygen. Average distance between the terminating UN (100) surface and bulk increases due to the presence of additional oxygen content, as well as for the (110) surface. The average distance between the surface layer and bulk is greater in the (110) surface than the (100) surface after water adsorption. Oxygen concentration determines whether H2 or oxynitrde is formed on the (110) surface. Local density of states and partial charge density show the bonding between the UN surfaces and adsorbates. From an electronic energy of −2 eV to the Fermi level, the majority of electrons are found to be localized around U atoms. Electron localization function calculations further reveal the corrosion mechanism details
Improvement of the BISON U3Si2 modeling capabilities based on multiscale developments to modeling fission gas behavior
Uranium silicide () is a concept explored as a potential alternative to U3Si2 fuel used in light water reactors (LWRs) since it may improve accident tolerance and economics due to its higher thermal conductivity and increased uranium density. has been previously used in research reactors in the form of dispersion fuel which operates at lower temperatures than commercial LWRs. The research reactor data illustrated that significant gaseous swelling occurs as the fuel burnup increases. Therefore, it is imperative to understand the fission gas behavior of U3Si2 under higher temperature LWR operating conditions. In this work, molecular dynamics and phase-field modeling techniques are used to reduce the uncertainty in select modeling assumptions made in developing the fission gas behavior model for U3Si2 in the BISON fuel performance code. To support the implementation of a fission gas model in BISON, cluster dynamics simulations of irradiation enhanced Xe diffusion have been carried out. Similarly, MD simulations were used to predict the athermal contribution due to atomic mixing during ballistic damage cascades. By combining our results with literature DFT data for thermal equilibrium diffusion, Xe diffusivity has been described over a wide range of temperatures for in-reactor conditions. These lower length scale informed models are then utilized in the assessment of BISON modeling capabilities by simulating the ATF-1 experiments irradiated in the Advanced Test Reactor (ATR). Sensitivity analysis (SA) and uncertainty quantification (UQ) are included as part of the assessment process to identify where further experiments and lower length scale modeling would be beneficial. The multiscale modeling approach utilized in this work can be applied to new fuel concepts being explored for both LWRs and advanced reactors (e.g., uranium nitride, uranium carbide)
- …