1,791 research outputs found
Interference and the lossless lossy beam splitter
By directing the input light into a particular mode it is possible to obtain
as output all of the input light for a beam splitter that is 50% absorbing.
This effect is also responsible for nonlinear quantum interference when two
photons are incident on the beam splitter.Comment: 10 pages, 2 figures, to appear in J. Mod. Op
Water monitor system: Phase 1 test report
Automatic water monitor system was tested with the objectives of assuring high-quality effluent standards and accelerating the practice of reclamation and reuse of water. The NASA water monitor system is described. Various components of the system, including the necessary sensors, the sample collection system, and the data acquisition and display system, are discussed. The test facility and the analysis methods are described. Test results are reviewed, and recommendations for water monitor system design improvement are presented
Method and apparatus for eliminating luminol interference material
A method and apparatus for removing porphyrins from a fluid sample which are unrelated to the number of bacteria present in the sample and prior to combining the sample with luminol reagent to produce a light reaction is disclosed. The method involves a pre-incubation of the sample with a dilute concentration of hydrogen peroxide which inactivates the interfering soluble porphyrins. Further, by delaying taking a light measurement for a predetermined time period after combining the hydrogen peroxide-treated water sample with a luminol reagent, the luminescence produced by the reaction of the luminol reagent with ions present in the solution, being short lived, will have died out so that only porphyrins within the bacteria which have been released by rupturing the cells with the sodium hydroxide in the luminol reagent, will be measured. The measurement thus obtained can then be related to the concentration of live and dead bacteria in the fluid sample
Fidelity for imperfect postselection
We describe a simple measure of fidelity for mixed state postselecting
devices. The measure is most appropriate for postselection where the task
performed by the output is only effected by a specific state.Comment: 8 Pages, 8 Figure
Rapid, quantitative determination of bacteria in water
A bioluminescent assay for ATP in water borne bacteria is made by adding nitric acid to a water sample with concentrated bacteria to rupture the bacterial cells. The sample is diluted with sterile, deionized water, then mixed with a luciferase-luciferin mixture and the resulting light output of the bioluminescent reaction is measured and correlated with bacteria present. A standard and a blank also are presented so that the light output can be correlated to bacteria in the sample and system noise can be substracted from the readings. A chemiluminescent assay for iron porphyrins in water borne bacteria is made by adding luminol reagent to a water sample with concentrated bacteria and measuring the resulting light output of the chemiluminescent reaction
Measuring Nothing
Measurement is integral to quantum information processing and communication;
it is how information encoded in the state of a system is transformed into
classical signals for further use. In quantum optics, measurements are
typically destructive, so that the state is not available afterwards for
further steps - crucial for sequential measurement schemes. The development of
practical methods for non-destructive measurements on optical fields is
therefore an important topic for future practical quantum information
processing systems. Here we show how to measure the presence or absence of the
vacuum in a quantum optical field without destroying the state, implementing
the ideal projections onto the respective subspaces. This not only enables
sequential measurements, useful for quantum communication, but it can also be
adapted to create novel states of light via bare raising and lowering
operators.Comment: 7 pages, 4 figure
Method for detecting coliform organisms
A method and apparatus are disclosed for determining the concentration of coliform bacteria in a sample. The sample containing the coliform bacteria is cultured in a liquid growth medium. The cultured bacteria produce hydrogen and the hydrogen is vented to a second cell containing a buffer solution in which the hydrogen dissolves. By measuring the potential change in the buffer solution caused by the hydrogen, as a function of time, the initial concentration of bacteria in the sample is determined. Alternatively, the potential change in the buffer solution can be compared with the potential change in the liquid growth medium to verify that the potential change in the liquid growth medium is produced primarily by the hydrogen gas produced by the coliform bacteria
Automated water monitor system field demonstration test report. Volume 1: Executive summary
A system that performs water quality monitoring on-line and in real time much as it would be done in a spacecraft, was developed and demonstrated. The system has the capability to determine conformance to high effluent quality standards and to increase the potential for reclamation and reuse of water
NASA JSC water monitor system: City of Houston field demonstration
A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques
- …
