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Measurement is integral to quantum information processing and communication; it is how in-
formation encoded in the state of a system is transformed into classical signals for further use. In
quantum optics, measurements are typically destructive, so that the state is not available afterwards
for further steps. Here we show how to measure the presence or absence of the vacuum in a quantum
optical field without destroying the state, implementing the ideal projections onto the respective
subspaces. This not only enables sequential measurements, useful for quantum communication, but
it can also be adapted to create novel states of light via bare raising and lowering operators.

I. INTRODUCTION

At first glance, measuring the vacuum is trivial, a per-
fect photodetector will reveal the vacuum state upon
the non-occurrence of a click. However, the converse
result, i.e. not measuring the vacuum, ideally should
preserve the information in the non-vacuum sector for
further interrogation - something which is difficult to
achieve with direct photodetection. Formally, we would
like to implement the following measurement projectors,
{|0〉〈0|, I−|0〉〈0|}, where the latter non-vacuum outcome
removes the vacuum component without affecting the rel-
ative amplitudes or coherences of the other Fock states.
This is crucial for sequential measurement schemes, such
as in [1–3], and rules out other projective schemes such as
quantum nondemolition measurements of photon num-
ber [6, 7]. The development of practical methods for
non-destructive measurements on optical fields [4, 5] is
therefore an important topic for future practical quan-
tum information processing systems.

Measurement is also a key element in performing non-
Gaussian operations, e.g. for entanglement purification
of continuous variable states. Recent examples include
the implementation of the quantum optical creation and
annihilation operators, both of which rely on postselec-
tion [8–10]. Extending the type of possible operations
is crucial for the production of tailored states in quan-
tum information systems. Our method can be simply
extended to provide a first realization of the bare photon
addition and subtraction operators.

We consider a single mode of an optical cavity in an ar-
bitrary quantum state, ρ, as our system to be measured.
To perform the measurement, we introduce a probe which
consists of a three level atom in the Λ-configuration (See
Fig. 1a). The cavity mode can be controllably coupled
to transition B whereas transition A interacts with an
externally applied laser field [11, 12]. In these papers the
general adiabatic mapping of atomic levels to cavities was
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introduced. Our particularly simple configuration is in-
sensitive to all field amplitudes other than the vacuum.
The Hamiltonian of the combined system can be writ-

ten in the rotating wave approximation as

HRWA = ~∆|e〉〈e|+ ~γA(t)(|e〉〈g| + |g〉〈e|)
+ ~γB(t)(|e〉〈g′|a+ |g′〉〈e|a†),

(1)

where the coupling constants γA and γB between the
atom and the two fields depend on the strength of the
respective fields at the point where the atom is located.
An optional detuning ∆ can be applied to both fields in
order to suppress single-photon resonance effects as long
as we maintain the two-photon resonance condition,

E′
g − Eg = ~(ωB − ωA). (2)

The situation is similar to the V-STIRAP scheme for
producing single photons [13] where a cavity evolves from
|0〉 → |1〉 through a dark state adiabatic evolution of an
atom |g〉 → |g′〉.
In our measurement procedure, we run the V-STIRAP

sequence in reverse: the initial state of the atom is |g′〉,
and the order of the A and B couplings is switched (see
Fig. 1b). If the cavity field initially contains at least one
photon, at the end of the sequence the atom is left in
|g〉 and the field has one photon subtracted. However, if
the cavity was originally in the vacuum state, the atom
stays in |g′〉 and the cavity is left unchanged. An initial
superposition of the cavity evolves as

|g′〉
∞
∑

n=0

αn|n〉 → |g′〉α0|0〉 − |g〉
∞
∑

n=1

αn|n− 1〉. (3)

The state of the atom is now entangled with that of the
cavity. By measuring the atomic state in either |g〉 or
|g′〉, we have determined whether the initial cavity state
had at least one photon or none. By coherent rotations
of the ground states before a population measurement,
projections onto more general subspaces are also possible.
If the atom is found in |g〉, the field amplitudes have

been shifted by one. The ideal projection (I − |0〉〈0|)
results if we replace the subtracted photon, this is simply
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FIG. 1: a) Lambda atomic system coupled to cavity. A three
level atom with two ground states (|g〉, |g′〉) and a single ex-
cited level (|e〉) can be used to probe for the vacuum com-
ponent of an optical field with annihilation operator a. The
A transition is driven by a STIRAP laser and the B tran-
sition can be controllably coupled to the cavity mode to be
measured. Initially, the atom is in the state |g′〉. The fi-
nal state of the atom |g〉 or |g′〉 depends on the presence
or absence of photons in the field respectively. b) Counter-
intuitive pulse sequence for the couplings. Consider the case
where there are n ≥ 1 photons in the field. With the ini-
tial state of the combined atom-mode system |g′, n〉, coupling
A is turned on first. As coupling B is slowly increased, the
atom-cavity state adiabatically follows the dark-state mani-
fold sin θ|g, n− 1〉 − cos θ|g′, n〉, θ = 0 → π/2. Coupling A is
now turned off, followed by coupling B, leaving the final state
of the system as |g, n−1〉. If the cavity was originally vacuum
(n = 0), the final state of the atom remains as |g′〉.

achieved by running the V-STIRAP procedure forwards.
Note that this does not require the initial cavity state to
be vacuum, we can add a photon to an arbitrary state of
the field. As discussed later, the shifting property of the
procedure can be exploited to perform novel operations
and generate non-classical states of light.
The key aspect of the adiabatic process is that the evo-

lution of the system does not rely on the dynamics of the
Hamiltonian, provided that the conditions of adiabatic
transition are satisfied. In this way, the state of the an-
cilla atom can be made asymptotically insensitive to the
cavity photon number, except for the critical case of the
vacuum. In the usual Jaynes-Cummings scenario, the dy-
namics in each of the combined Fock subspaces proceeds
at a rate proportional to the square root of photon num-
ber, leading in general to different states of the atom. In
our scheme, the atom does not distinguish between dif-
ferent photon numbers n = 1, 2, 3, . . ., which allows us to
perform the ideal projection onto the complement of the
vacuum, in contrast to previous proposals for quantum
non-demolition measurements of the optical field [6, 7].
We can extend the method to project onto the joint

n-mode vacuum state or complement, as required in the
decoding scheme of [2]. This requires a probe atom with
n+2 levels in an (n+ 1)-pod configuration. Let |g0〉 de-
note the initial state of the atom, the remaining ground
states be denoted |gn〉 for n = 1, . . . , n, and |e〉 be the
excited level. The |e〉−|gn〉 (n > 0) transitions are driven
by lasers with strength Γj and the |e〉 − |g0〉 transition is
selectively coupled to each of the n-modes in turn with
strength γj . In real atoms, this may be difficult but it
may be simpler in engineered systems, e.g. supercon-
ducting qudits coupled to transmission lines. We ap-
ply in turn the same procedure as for the single mode
measurement by sequential pairwise adiabatic variation
of {Γj , γj}, j = 1, . . . , n, after which the population of
|g0〉 is determined. If the atom is detected in |g0〉, then
the n-modes are projected onto the joint vacuum state
|00 . . .0〉, otherwise the atom and n-modes are left in a
(generally entangled) state where the |g0〉|00 . . . 0〉 state
has been truncated. To disentangle the atom and add
back subtracted photons, running the sequence of cou-
plings backwards and in reverse order returns the atom
to |g0〉 which erases any information of the photon num-
ber distribution of the n-modes.

II. IMPLEMENTATION

The experimental setup for V-STIRAP [13] can be
adapted to perform our vacuum measurement (Fig.2).
We use a cavity with a long storage time to reduce leak-
age and decoherence. We also introduce preparation and
readout zones for the atom. The motion of the atom is
reversed in the case of measuring the atom in |g〉 in or-
der to replace a subtracted photon. There are several
experimental challenges, mainly the lifetime of the field
compared to the time required to implement the mea-
surement. The cavity field must last long enough for the
atom to be adiabatically transported, measured, and re-
turned. The damping rate of the cavity and atom-cavity
coupling are both highly dependent upon the effective
mode volume of the cavity and balancing these factors
will be system dependent. To give an indication of the
performance of the protocol under non-ideal condition,
we have simulated the measurement of a lossy cavity with
finite sweep times, the results displayed in Fig.3.

III. APPLICATIONS

A straightforward application of this measurement is
in sequential decoder schemes as discussed in [3]. In the
protocol of [2], the state of a n-mode system has to be
identified. The state is taken from an ensemble of prod-
ucts of coherent states, {|αk

1 , α
k
2 , . . . , α

k
n〉}. A sequence of

displacements and projections onto the n-mode vacuum
or its complement has been shown to decode the mes-
sage successfully in the n → ∞ limit as long as the rate
of transmission is below the Holevo bound.
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FIG. 2: Cavity QED vacuum measurement. The configura-
tion of the cavity mode, driving laser and trajectory of the
atom are similar to the V-STIRAP scheme, except that the
laser beam is encountered before the cavity mode. An opti-
cal lattice traps and controls the position, hence coupling, of
the atom with both the driving laser and cavity mode. State
preparation in |g′〉 is performed before the atom is transported
into the cavity. After the atom has crossed the cavity and
adiabatically interacted with laser and mode, it is measured,
e.g. by fluorescence shelving [14] or cavity enhanced detec-
tion [15], to discover which ground state it is in. To perform
the ideal (I−|0〉〈0|) operation in the case of the |g〉 result, the
motion of the atom is reversed in order to replace the photon
extracted from the cavity.

We can also use the photon number altering properties
of our procedure to enact bare raising and lowering op-
erations, in contrast to the creation a† and annihilation
operators a as usually considered. The non-Hermitian a†

and a operators represent non-Gaussian operations and
have been realized probabilistically in experiments [8–10].
“Subtracting” a photon from squeezed light can produce
an approximate Schrödinger cat state [16–19], and both
processes have been used in super-optimal optical ampli-
fication protocols [20–23].
However, the a† and a operators do not simply add

and subtract photons, but also Bose condition the state.
Pure addition and subtraction of photons are represented
by bare raising and lowering operators [24] (sometimes
known as photon number shifting operators [25])

E+ =
∞
∑

n=0

|n+ 1〉〈n|, E− =
∞
∑

n=1

|n− 1〉〈n|. (4)

These can produce nonclassical states of light; for exam-
ple any state which has E+ applied to it must violate the
Klyshko criterion [25]. Applying E+ to a coherent state
produces a state with subpoissonian statistics, whereas
applying Ê− makes it superpoissonian.
There has been little study of the bare operators and

their effects, mainly because they have not been realized
experimentally [26]. Implementing E+ and E− requires
cancellation of the

√
n Bose enhancement factors inher-

ent in â and â†. The nature of the (I− |0〉〈0|) projection

FIG. 3: Fidelity of the full measurement procedure, condi-
tioned on the detection of the atom in |g〉. The initial cavity
field is in a coherent state of amplitude αini. The coupling
constants γA and γB were modulated as cos2 t and sin2 t, re-
spectively, and their amplitudes were in a 2 : 1 ratio. The
detuning ∆ was zero and the decay rate of the |e〉 state was
1% of the maximum cavity coupling g = max γB. The cav-
ity loss parameter κ is also plotted relative to g. Assuming
the knowledge of the cavity properties, the fidelity optimizing
time of transition was chosen in each data point. We note
that assuming an educated guess for the initial mean pho-
ton number of the state, the point of maximum fidelity at a
constant loss may be shifted along the α axis by altering the
intensity of the laser field.

and the adiabatic process that we have described does not
alter the relative weights of the amplitudes corresponding
to different photon numbers, in contrast to other schemes
which rely on a†. The V-STIRAP process implements
E+ and the reverse process realises E−. In addressing
the problem of quantum optical phase the measurement
of moments of bare operators was proposed using a basic
scheme similar to that considered here, without a detailed
analysis of the effect of reachable experimental parame-
ters [27]. We will explore the detailed consequences of
this elsewhere.

We can further exploit the conditional dynamics pre-
serving the relative amplitudes for all non-zero number
states to implement a reverse quantum scissors [28]. In
the original quantum scissors scheme a general superposi-
tion of photon numbers has photon numbers higher than
1 removed, without altering the zero and one photon am-
plitudes. The scheme has been theoretically extended to
make the cut at higher photon numbers [29, 30]. By suc-
cessive application of the measurement without photon
replacement n times, we can truncate the first n ampli-
tudes of a state, conditioned on not observing the vac-
uum. By adding n photons, we return the state to its
original form but without the first n terms (Fig.4). The

probability that this will occur is 1−
∑n−1

k=0 Pk where Pk is
the probability of observing k photons. Similarly, we also
can simply use the protocol to perform photon number
resolving measurements.
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FIG. 4: Wigner function of a vacuum-stripped |α = 1〉 coher-
ent state. In the protocol a loss rate of κ = 0.005g and other
parameters as specified in Fig. 3 were used. It shares all the
features of the idealised output state, including negativity.
This state is obtained from |α = 1〉 with a probability of 0.61.
The probability of measuring the vacuum |〈1|0〉|2 is 0.37, and
a 2% error is caused by photon loss during the process. The
fidelity is 96% compared with (I− |0〉〈0|)|α = 1〉.

IV. CONCLUSION

The ability to implement ideal projections on a field
opens up new possibilities for quantum communication
and computation. Adiabatic evolution in our method
avoids the

√
n factors in dynamical schemes and achieves

the unusual nonlinearity required. Though it will be
challenging to engineer systems with the requisite long
storage times with strong coupling, recent advances in
microcavities as well as microwave and nanomechanical
systems give grounds for optimism. The simplicity and
utility of the system described here for implementing sev-
eral quantum optical information protocols should be sig-
nificant drivers towards this goal.

Appendix A: Technical Details

To see why the methods works, we examine the form of
the rotating-wave Hamiltonian for the atom-field system,

HRWA = ~∆|e〉〈e|+ ~γA(t)(|e〉〈g|+ |g〉〈e|)
+ ~γB(t)(|e〉〈g′|a+ |g′〉〈e|a†),

(A1)

Firstly, we note that for any n ∈ N, the subspace
{ |g, n−1〉, |e, n−1〉, |g′, n〉} is coupled together byHRWA.
Other states are not coupled to this triplet, and this sim-
plifies the dynamics significantly. Together with the lin-
ear span of the vector |g′, 0〉, which itself is an eigenspace
corresponding to the eigenvalue 0, these subspaces al-
low for a decomposition of the whole Hilbert space de-
scribing the coupled system of the atom and the cav-
ity. Within each of the three-dimensional subspaces, we
can identify three nondegenerate eigenenergies: 0 and
~

2 (∆ ±
√

∆2 + 4γ2A(t) + 4nγ2B(t)). The eigenstates cor-
responding to zero energy are, up to normalisation and
phase factors,

√
nγB(t)|g, n−1〉−γA(t)|g′, n〉, along with

the special case of |g′, 0〉, noted above.

In order to study the deviations from an ideal adia-
batic transition, we solve the time-dependent Schrödinger
equation. For a given n, we denote

θ(t) = arctan

√
nγB(t)

γA(t)
(A2)

and

ν(t) =
√

γ2A(t) + nγ2B(t). (A3)

In this notation, the dark state can be expressed as

|a(t)〉 = sin θ(t)|g, n− 1〉 − cos θ(t)|g′, n〉. (A4)

We rewrite the equation of motion in an orthonormal
basis consisting of the vectors |a(t)〉,

|b(t)〉 = cos θ(t)|g, n− 1〉+ sin θ(t)|g′, n〉, (A5)

and |e〉.
Resolving the instantaneous state as

|ψ(t)〉 = αa(t)|a(t)〉 + αb(t)|b(t)〉 + αe(t)|e〉, (A6)

we substitute this into the Schrödinger equation to find
the equations of motion for αi(t),

α̇a = θ̇αb,

α̇b = −θ̇αa − iναe,

α̇e = −iναb − i∆αe.

(A7)

If the system begins in the dark state the initial condi-
tions are αa(0) = 1, αb(0) = αe(0) = 0. The equations
are best solved in terms of the projective space coordi-
nates κb = αb/αa and κe = αe/αa, where they become

κ̇b = −θ̇ − iνκe − θ̇κ2b ,

κ̇e = −iνκb − i∆κe − θ̇κbκe.
(A8)

The last pair of equations can be solved asymptotically.
For this purpose, we denote the complete time of transi-
tion T , such that all of θ̇, θ̈/θ̇ and ν̇/ν are upper bounded
by a constant multiple of T−1. Also, we denote ν0 the
minimum modulus of the lower of the nonzero eigenval-
ues of HRWA (restricted to the given subspace) reached
during the transition. This value is also a lower bound
for both of ν(t) and ν2(t)/∆. We use these inequalities
to find that

κb(t) = −i θ̇(t)∆
ν2(t)

+O((ν0T )
−2),

κe(t) = i
θ̇(t)

ν(t)
+O((ν0T )

−2).

(A9)

These formulas allow us to express

αa(t) = exp

(

−i∆
∫ t

0

θ̇2(t)

ν2(t)
dt

)

+O((ν0T )
−2). (A10)
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If the spatial distributions of intensity of the two light
modes are smooth functions of coordinates, the time
derivative of θ(t) for both t = 0 and T = 0 is zero.
It immediately follows that the relative contributions of
the states orthogonal to the desired final state, as given
by Eq. (A9), vanish at the end of the transition, leaving
only the asymptotic term. The probability of the dia-
batic transition is in turn O((ν0T )

−4) and can be pushed
arbitrarily close to zero by choosing a sufficiently long
time T . The resulting state obtains a phase shift of

φ = −∆

∫ T

0

θ̇2(t)

ν2(t)
dt+O((ν0T )

−2), (A11)

which itself scales as O((ν0T )
−1) and also has a limit of

zero for T → ∞.
The dependence of the results on the photon number

n manifests itself through the constant

ν0 = min
t∈(0,T )





√

(

∆

2

)2

+ γ2A(t) + nγ2B(t)−
∆

2



 .

(A12)
This formula suggests that the scalings of both the prob-
ability of error and the phase φ are actually the more
favourable the higher n one operates in. Studying the
worst case, i.e., n = 1, we find that the transition is op-
timal if the two light modes overlap in such a way that
the effective beginning or end of either one coincides with
the point of maximal intensity of the other one.
We finish the analysis by noting that the state |g′, 0〉

remains unchanged during the whole transition and ob-
tains no phase shift due to the fact that it corresponds
to exactly zero energy.
As a result, any linear superposition

∞
∑

n=0

αn|g, n〉 (A13)

evolves under “forward” STIRAP to

∞
∑

n=0

αn|g′, n+ 1〉, (A14)

in a deterministic manner, up to correction terms of order

(ν
(min)
0 T )−1. Similarly, letting the atom encounter the

laser field A first, any state of the form

∞
∑

n=0

αn|g′, n〉 (A15)

evolves into

α0|g′, 0〉+
∞
∑

n=1

αn|g, n− 1〉. (A16)

In the case of a cavity in a mixed state, the correspond-
ing operation is performed on each element of its Schmidt
decomposition.

Appendix B: Experimental Considerations

For the implementation of the measurement, this re-
quires that the system being measured does not signif-
icantly evolve over the timescale required to perform
the adiabatic evolutions and atomic measurement. This
will be a considerable experimental challenge, though ad-
vances in cavity QED have led to high coupling strengths
compared to loss rates which are the dominant sources
of decoherence.

1. Cavity lifetime

Very high Q-factors have been achieved in optical res-
onators, of the order of 3.5 × 1012 for large supermirror
cavities [31], and approaching 1011 for Fabry-Perot cav-
ities [32]. In addition, the atom must couple strongly
with the cavity mode as this will limit the speed of
the atomic transport at which adiabaticity can be main-
tained. Together with the low damping rate, we require
that the atom-cavity system is within the strong cou-
pling regime. Large coupling will be favoured by small
mode volumes but this may conflict with the required
storage time. Ringdown measurements for QED experi-
ments have shown a decay time of 12.4 microseconds for
a 1cm long cavity [33].

a. Cavity-atom coupling

The coupling γB limits the rate at which the atom
can traverse the cavity. Coupling rates of the order of
10MHz have been achieved in cavity QED [34], which
leads to an adiabatic-safe interaction time on the order
of ∼ 1 microsecond. For a proof of principle experiment,
the measurement of the atom can take far longer than the
decay time of the cavity if one is not interested in restor-
ing the subtracted photon. Much higher couplings have
been reported for atoms interacting with evanescent field
of a toroidal microresonator, of the order of 40MHz [35].

b. Detection

A standard method of state detection is shelving fluo-
rescence. A long cavity storage time is essential for the
measurement as shelving fluorescence takes a finite time,
of the order of 100 microseconds for 99.9% fidelity [14]
due to the need for the atom to absorb and spontaneously
emit photons and for these to be detected. This time
could be reduced by increasing the collection solid angle
and the probe power.
Faster atomic state detection could be achieved by us-

ing another cavity [36]. If the atom is strongly coupled to
this detection cavity, this can affect the transmission of
the cavity which can be interrogated by a probe beam.
In practice, a different mode of the same cavity could
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be used for detection. A detection time of 10 microsec-
onds at 97% efficiency has been reported for fibre-coupled
cavity detection [37]. Even faster detection has been
achieved by combine both fluorescence and cavity cou-
pling, 99.7% in less than 1 microsecond [15]. Detection
of atoms coupled to cavities in 250 nanoseconds has also
been reported [35].

c. Other physical systems

Photonic cavities may also be a possibility to tune the
mode volumes, coupling strengths and system geome-
try. Whispering gallery modes in microspheres or mi-
crotoroids are also possibilities though the required ge-
ometry is more complex. Controlling the atomic position
and shining the STIRAP laser may be issues. Projected
γB = several 100MHz, κ < 1MHz [38] for such mi-
crotoroid cavities. Coupled ion-cavity QED experiments
may also be a viable system. The progress on segmented
traps and in shuttling [39] allows controlled ion transport

through a cavity field [40].

We note that the same technique can be applied to su-
perconducting systems of artificial three-level atoms [41]
and stripline resonators using adjustable couplings [42,
43]. In these systems, very large couplings have been ob-
served (200MHz [44]). It is calculated that couplings
of up to 360MHz could be achieved in optimized ge-
ometries [45]. Cavity loss of κ = 250 kHz has been
achieved in other experiments [46]. Tunable couplings
between superconducting elements have been developed
((0−100)MHz) [42, 43]. Measurement of three level sys-
tems have been reported in [41].
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