1,019 research outputs found
Atmospheric teleconnections between the Arctic and the Baltic Sea region as simulated by CESM1-LE
This paper examines teleconnections between the Arctic and the Baltic Sea region and is based on two cases of Community Earth System Model version 1 large ensemble (CESM-LE) climate model simulations: the stationary case with pre-industrial radiative forcing and the climate change case with RCP8.5 radiative forcing.
The stationary control simulation's 1800-year long time series were used for stationary teleconnection and a 40-member ensemble from the period 1920–2100 is used for teleconnections during ongoing climate change. We analyzed seasonal temperature at a 2 m level, sea-level pressure, sea ice concentration, precipitation, geopotential height, and 10 m level wind speed. The Arctic was divided into seven areas.
The Baltic Sea region climate has strong teleconnections with the Arctic climate; the strongest connections are with Svalbard and Greenland region. There is high seasonality in the teleconnections, with the strongest correlations in winter and the lowest correlations in summer, when the local meteorological factors are stronger. North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) climate indices can explain most teleconnections in winter and spring. During ongoing climate change, the teleconnection patterns did not show remarkable changes by the end of the 21st century. Minor pattern changes are between the Baltic Sea region temperature and the sea ice concentration.
We calculated the correlation between the parameter and its ridge regression estimation to estimate different Arctic regions' collective statistical connections with the Baltic Sea region. The seasonal coefficient of determination, R2, was highest for winter: for T2 m, R2=0.64; for sea level pressure (SLP), R2=0.44; and for precipitation (PREC), R2=0.35. When doing the same for the seasons' previous month values in the Arctic, the relations are considerably weaker, with the highest R2=0.09 being for temperature in the spring. Hence, Arctic climate data forecasting capacity for the Baltic Sea region is weak.
Although there are statistically significant teleconnections between the Arctic and Baltic Sea region, the Arctic impacts are regional and mostly connected with climate indexes. There are no simple cause-and-effect pathways. By the end of the 21st century, the Arctic ice concentration has significantly decreased. Still, the general teleconnection patterns between the Arctic and the Baltic Sea region will not change considerably by the end of the 21st century.</p
From limit cycles to strange attractors
We define a quantitative notion of shear for limit cycles of flows. We prove
that strange attractors and SRB measures emerge when systems exhibiting limit
cycles with sufficient shear are subjected to periodic pulsatile drives. The
strange attractors possess a number of precisely-defined dynamical properties
that together imply chaos that is both sustained in time and physically
observable.Comment: 27 page
Spectral statistics of random geometric graphs
We use random matrix theory to study the spectrum of random geometric graphs,
a fundamental model of spatial networks. Considering ensembles of random
geometric graphs we look at short range correlations in the level spacings of
the spectrum via the nearest neighbour and next nearest neighbour spacing
distribution and long range correlations via the spectral rigidity Delta_3
statistic. These correlations in the level spacings give information about
localisation of eigenvectors, level of community structure and the level of
randomness within the networks. We find a parameter dependent transition
between Poisson and Gaussian orthogonal ensemble statistics. That is the
spectral statistics of spatial random geometric graphs fits the universality of
random matrix theory found in other models such as Erdos-Renyi, Barabasi-Albert
and Watts-Strogatz random graph.Comment: 19 pages, 6 figures. Substantially updated from previous versio
Trial of Remote Continuous versus Intermittent NEWS monitoring after major surgery (TRaCINg): protocol for a feasibility randomised controlled trial
Background: Despite medical advances, major surgery remains high risk. Up to 44% of patients experience postoperative complications, which can have huge impacts for patients and the healthcare system. Early recognition of postoperative complications is crucial in reducing morbidity and preventing long-term disability. The current standard of care is intermittent manual vital signs monitoring, but new wearable remote monitors offer the benefits of continuous vital signs monitoring without limiting the patient’s mobility. The aim of this study is to evaluate the feasibility, acceptability and clinical impacts of continuous remote monitoring after major surgery.
Methods: The study is a randomised, controlled, unblinded, parallel group, feasibility trial. Adult patients undergoing elective major surgery will be invited to participate if they have the capacity to provided informed, written consent and do not have a cardiac pacemaker or an allergy to adhesives. Participants will be randomly assigned to receive continuous remote monitoring and normal National Early Warning Score (NEWS) monitoring (intervention group) or normal NEWS monitoring alone (control group). Continuous remote monitoring will be achieved using the SensiumVitals® wireless patch which is worn on the patient’s chest and monitors heart rate, respiratory rate and temperature continuously and alerts the nurse when there is deviation from pre-set physiological norms. Participants will be followed up throughout their hospital admission and for 30 days after discharge. Feasibility will be assessed by evaluating recruitment rate, adherence to protocol and randomisation, and the amount of missing data. The acceptability of the patch to nursing staff and patients will be assessed using questionnaires and interviews. Clinical outcomes will include time to antibiotics in cases of sepsis, length of hospital stay, number of critical care admissions and rate of readmission within 30 days of discharge.
Discussion: Early detection and treatment of complications minimises the need for critical care, improves patient outcomes, and produces significant cost savings for the healthcare system. Remote continuous monitoring systems have the potential to allow earlier detection of complications, but evidence from the literature is mixed. Demonstrating significant benefit over intermittent monitoring to offset the practical and economic implications of continuous monitoring requires well-controlled studies in high-risk populations to demonstrate significant differences in clinical outcomes; this feasibility trial seeks to provide evidence of how best to conduct such a confirmatory trial.
Trial registration: This study is listed on the ISRCTN registry with study ID ISRCTN16601772
On the rate of quantum ergodicity in Euclidean billiards
For a large class of quantized ergodic flows the quantum ergodicity theorem
due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost
all eigenfunctions become equidistributed in the semiclassical limit. In this
work we first give a short introduction to the formulation of the quantum
ergodicity theorem for general observables in terms of pseudodifferential
operators and show that it is equivalent to the semiclassical eigenfunction
hypothesis for the Wigner function in the case of ergodic systems. Of great
importance is the rate by which the quantum mechanical expectation values of an
observable tend to their mean value. This is studied numerically for three
Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000
eigenfunctions. We find that in configuration space the rate of quantum
ergodicity is strongly influenced by localized eigenfunctions like bouncing
ball modes or scarred eigenfunctions. We give a detailed discussion and
explanation of these effects using a simple but powerful model. For the rate of
quantum ergodicity in momentum space we observe a slower decay. We also study
the suitably normalized fluctuations of the expectation values around their
mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A
version with all figures can be obtained from
http://www.physik.uni-ulm.de/theo/qc/ (File:
http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any
problems contact Arnd B\"acker (e-mail: [email protected]) or Roman
Schubert (e-mail: [email protected]
Transverse instability for non-normal parameters
We consider the behaviour of attractors near invariant subspaces on varying a
parameter that does not preserve the dynamics in the invariant subspace but is
otherwise generic, in a smooth dynamical system. We refer to such a parameter
as ``non-normal''. If there is chaos in the invariant subspace that is not
structurally stable, this has the effect of ``blurring out'' blowout
bifurcations over a range of parameter values that we show can have positive
measure in parameter space.
Associated with such blowout bifurcations are bifurcations to attractors
displaying a new type of intermittency that is phenomenologically similar to
on-off intermittency, but where the intersection of the attractor by the
invariant subspace is larger than a minimal attractor. The presence of distinct
repelling and attracting invariant sets leads us to refer to this as ``in-out''
intermittency. Such behaviour cannot appear in systems where the transverse
dynamics is a skew product over the system on the invariant subspace.
We characterise in-out intermittency in terms of its structure in phase space
and in terms of invariants of the dynamics obtained from a Markov model of the
attractor. This model predicts a scaling of the length of laminar phases that
is similar to that for on-off intermittency but which has some differences.Comment: 15 figures, submitted to Nonlinearity, the full paper available at
http://www.maths.qmw.ac.uk/~eo
Semiclassical measures and the Schroedinger flow on Riemannian manifolds
In this article we study limits of Wigner distributions (the so-called
semiclassical measures) corresponding to sequences of solutions to the
semiclassical Schroedinger equation at times scales tending to
infinity as the semiclassical parameter tends to zero (when this is equivalent to consider solutions to the non-semiclassical
Schreodinger equation). Some general results are presented, among which a weak
version of Egorov's theorem that holds in this setting. A complete
characterization is given for the Euclidean space and Zoll manifolds (that is,
manifolds with periodic geodesic flow) via averaging formulae relating the
semiclassical measures corresponding to the evolution to those of the initial
states. The case of the flat torus is also addressed; it is shown that
non-classical behavior may occur when energy concentrates on resonant
frequencies. Moreover, we present an example showing that the semiclassical
measures associated to a sequence of states no longer determines those of their
evolutions. Finally, some results concerning the equation with a potential are
presented.Comment: 18 pages; Theorems 1,2 extendend to deal with arbitrary time-scales;
references adde
China and the crisis : global power, domestic caution and local initiative
Even though the global crisis had a quick and dramatic impact on Chinese exports, the Chinese government responded with a range of policy responses that have helped maintain high rates of growth. This success has helped propel China to the centre of global politics, accelerating what many perceive to be a power shift from the West to China. But these gains were achieved by reversing policy in previous years designed to make a fundamental shift in China‟s mode of development, and have highlighted the problems associated with making such a transition. At the moment that many are looking at the Chinese "model" as a potential alternative to the Washington Consensus, one of the consequences of the crisis is to further question the long term efficacy of this "model" in China itself
Classical and quantum ergodicity on orbifolds
We extend to orbifolds classical results on quantum ergodicity due to
Shnirelman, Colin de Verdi\`ere and Zelditch, proving that, for any positive,
first-order self-adjoint elliptic pseudodifferential operator P on a compact
orbifold X with positive principal symbol p, ergodicity of the Hamiltonian flow
of p implies quantum ergodicity for the operator P. We also prove ergodicity of
the geodesic flow on a compact Riemannian orbifold of negative sectional
curvature.Comment: 14 page
- …