2,177 research outputs found

    Some comments on developments in exact solutions in statistical mechanics since 1944

    Full text link
    Lars Onsager and Bruria Kaufman calculated the partition function of the Ising model exactly in 1944 and 1949. Since then there have been many developments in the exact solution of similar, but usually more complicated, models. Here I shall mention a few, and show how some of the latest work seems to be returning once again to the properties observed by Onsager and Kaufman.Comment: 28 pages, 5 figures, section on six-vertex model revise

    Electroviscous effects of simple electrolytes under shear

    Full text link
    On the basis of a hydrodynamical model analogous to that in critical fluids, we investigate the influences of shear flow upon the electrostatic contribution to the viscosity of binary electrolyte solutions in the Debye-H\"{u}ckel approximation. Within the linear-response theory, we reproduce the classical limiting law that the excess viscosity is proportional to the square root of the concentration of the electrolyte. We also extend this result for finite shear. An analytic expression of the anisotropic structure factor of the charge density under shear is obtained, and its deformation at large shear rates is discussed. A non-Newtonian effect caused by deformations of the ionic atmosphere is also elucidated for τDγ˙>1\tau_D\dot{\gamma}>1. This finding concludes that the maximum shear stress that the ionic atmosphere can support is proportional to λD3\lambda_D^{-3}, where γ˙\dot{\gamma}, λD\lambda_D and τD=λD2/D\tau_D=\lambda_D^2/D are, respectively, the shear rate, the Debye screening length and the Debye relaxation time with DD being the relative diffusivity at the infinite dilution limit of the electrolyte.Comment: 13pages, 2figure

    Entropy-driven formation of the gyroid cubic phase

    Get PDF
    We show, by computer simulation, that tapered or pear-shaped particles, interacting through purely repulsive interactions, can freely self-assemble to form the three-dimensionally periodic, gyroid cubic phase. The Ia3d gyroid cubic phase is formed by these particles both on compression of an isotropic configuration and on expansion of a smectic A bilayer arrangement. For the latter case, it is possible identify the steps by which the topological transformation from non-intersecting planes to fully interpenetrating, periodic networks takes place</p

    Storage Capacity of Two-dimensional Neural Networks

    Get PDF
    We investigate the maximum number of embedded patterns in the two-dimensional Hopfield model. The grand state energies of two specific network states, namely, the energies of the pure-ferromagnetic state and the state of specific one stored pattern are calculated exactly in terms of the correlation function of the ferromagnetic Ising model. We also investigate the energy landscape around them by computer simulations. Taking into account the qualitative features of the phase diagrams obtained by Nishimori, Whyte and Sherrington [Phys. Rev. E {\bf 51}, 3628 (1995)], we conclude that the network cannot retrieve more than three patterns.Comment: 13pages, 7figures, revtex

    Using the de Haas-van Alphen effect to map out the closed three-dimensional Fermi surface of natural graphite

    Full text link
    The Fermi surface of graphite has been mapped out using de Haas van Alphen (dHvA) measurements at low temperature with in-situ rotation. For tilt angles θ>60\theta>60^{\circ} between the magnetic field and the c-axis, the majority electron and hole dHvA periods no longer follow the cos(θ)\cos(\theta) behavior demonstrating that graphite has a 3 dimensional closed Fermi surface. The Fermi surface of graphite is accurately described by highly elongated ellipsoids. A comparison with the calculated Fermi surface suggests that the SWM trigonal warping parameter γ3\gamma_3 is significantly larger than previously thought

    Corner transfer matrices in statistical mechanics

    Full text link
    Corner transfer matrices are a useful tool in the statistical mechanics of simple two-dimensinal models. They can be very effective way of obtaining series expansions of unsolved models, and of calculating the order parameters of solved ones. Here we review these features and discuss the reason why the method fails to give the order parameter of the chiral Potts model.Comment: 18 pages, 4 figures, for Proceedings of Conference on Symmetries and Integrability of Difference Equations. (SIDE VII), Melbourne, July 200

    Correlation energy of an electron gas: a functional approach

    Full text link
    Correlation effects of an electron gas in an external potential are derived using an Effective Action functional method. Corrections beyond the random phase approximation (RPA) are naturally incorporated by this method. The Effective Action functional is made to depend explicitly on two-point correlation functions. The calculation is carried out at imaginary time. For a homogeneous electron gas, we calculate the effect of exchange on the ring diagrams at zero temperature and show how to include some of the ladder diagrams. Our results agree well with known numerical calculations. We conclude by showing that this method is in fact a variant of the time dependent density functional method and suggest that it is suitable to be applied to the study of correlation effects in the non-homogeneous case.Comment: 20 figures numbered as in the tex

    Island formation without attractive interactions

    Get PDF
    We show that adsorbates on surfaces can form islands even if there are no attractive interactions. Instead strong repulsion between adsorbates at short distances can lead to islands, because such islands increase the entropy of the adsorbates that are not part of the islands. We suggest that this mechanism cause the observed island formation in O/Pt(111), but it may be important for many other systems as well.Comment: 11 pages, 4 figure

    Quantum macrostatistical picture of nonequilibrium steady states

    Full text link
    We employ a quantum macrostatistical treatment of irreversible processes to prove that, in nonequilibrium steady states, (a) the hydrodynamical observables execute a generalised Onsager-Machlup process and (b) the spatial correlations of these observables are generically of long range. The key assumptions behind these results are a nonequilibrium version of Onsager's regression hypothesis, together with certain hypotheses of chaoticity and local equilibrium for hydrodynamical fluctuations.Comment: TeX, 13 page

    Hard colloidal rods near a soft wall: wetting, drying, and symmetry breaking

    Full text link
    Within an Onsager-like density functional theory we explore the thermodynamic and structural properties of an isotropic and nematic fluid of hard needle-like colloids in contact with a hard substrate coated with a soft short-ranged attractive or repulsive layer. As a function of the range and the strength of the soft interactions we find wetting and drying transitions, a pre-drying line, and a symmetry-breaking transition from uniaxial to biaxial in the wetting and drying film.Comment: 7 pages, 2 figure
    corecore