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Storage capacity of two-dimensional neural networks

Shinsuke Koyania
Complex Systems Engineering, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo 8628, Japan
(Received 8 May 2001; revised manuscript received 28 September 2001; published 19 Decemper 2001

We investigate the maximum number of embedded patterns in the two-dimensional Hopfield model. The
grand state energies of two specific network states, namely, the energies of the pure-ferromagnetic state and the
state of specific one stored pattern are calculated exactly in terms of the correlation function of the ferromag-
netic Ising model. We also investigate the energy landscape around them and the stability of the pure retrieval
state. Taking into account the qualitative features of the phase diagrams obtained by Nishimori, Whyte, and
Sherrington[Phys. Rev. E51, 3628 (1995], we conclude that the network cannot retrieve more than three
patterns.
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[. INTRODUCTION tive features of the phase diagram obtained by Nishimori
et al.[4]. In Sec. IV, we analyze the storage capacity of our
The Hopfield model1] is one of the simplest mathemati- model system. Section V is devoted to discussion of all the
cal models which explains associative memory. This modetesults that we obtain.
is characterized by binary state neurons and each neuron is
represented by Ising spin. In this model system, arbitrary two Il. DEEINITION OF THE SYSTEM
neurons interact with each otheia the so-called Hebb rule.
The Hebb rule is one of the standard learning rules of the [N this section, we define our model systems. The Hamil-

patterns¢” (i=1,...N; u=1,...p) and determines the tonian of the system is given as
strength of the interactiod;; between the andjth neurons,
say,§ andS;, as H= _<Z> Ji;SS, 2)
]
1 Hoght
Ji=y % && (D whereS (i=1,...N) are the states of the neuron taking

binary value= 1, andJ;; is the strength of the interaction

where . means the number of embedded patterns ind Petweers; andS;. The summatiork ;) appearing in Eq(2)
denotes the number of neurons. These features have beBf!S Over nearest-neighbor neurons on a square lattice. We
deeply investigated by statistical mechani2s3]. Actually, c_hose theshort-rangeHebb rule as an interaction which is
up to now, various extensions and generalizations of th@iven by

Hopfield model were proposed and these properties were in- o

vestigated from a statistical mechanical point of vitsee, J“:i S ogren 3)
for example[3]). However, little is known about the proper- op st

ties of the Hopfield model in which the length of interactions

Jjj is restricted to the nearest-neighbor neurons. By the anafor the nearest-neighbor sitg$j) and Ji;=0 otherwise.
ogy to the spin system in statistical mechanics, we call thigjere, p is the number of embedded patterns aft=
type of the Hopfield model thénite-dimensional Hopfield 1 (,=1,... p;i=1,... N). Let us consider the prob-
model Inspired t_)y the stut_jy_ of l_\lIShIm_OBt al. [4],_|n this ability distribution of a set of patterng&4}(={¢&"|i
paper, we consider the finite-dimensional Hopfield model_ 1 . N;u=1,...p}). We suppose that the probability

storing structured patterns. In general, it is hard to analyz?nat’ arbitrary nearest-neighbor sites of jith pattern are

suc.h flnlte—dlme_nsmnal systems explicitly. Howe\_/er, one can, 4 ¢ respectively, is proportional to
derive several rigorous results of thermodynamic properties |

of the system with the assistance of the Pierls arguments and 3
the gauge transformatiorjgd]. Although the qualitative fea- exd —2 ghen ()
tures of the phase diagrams of the system became clear by \/E LR

these analyses, nobody has yet succeeded in deriving their
quantitative behavior at all. In this paper, we analyze thewvhere the parametdy controls the degree of the correlation
storage capacity of the system quantitatively. We restrict ourbetween arbitrary nearest-neighbor sites. Let us vRitg/*
selves to the case of two-dimensional system on the squar:egj#) and P(&=— glﬂ) as the probability ofg{‘:gll‘ and
lattice. . . _ &'=— ¢, respectively. Then, the ratio of the former to the
This paper is organized as follows. In Sec. II, we explainjater is given by
our model system. In Sec. Ill, we briefly review the qualita-
P(&=¢) 2J
) e g (5)

*Electronic address: s_koyama@complex.eng.hokudai.ac.jp P(&f'=— fft) \/B
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FIG. 1. Typical examples of embedded patterns. The size of
patterns is 108 100. From the left to the right, the values of pa-
rameter,/\/p are 0.10, 0.42, and 0.60.

(b)

. i ey " FIG. 2. The qualitative phase diagram with axes of temperature
For the case 08,=0, Eq. (5) becomesP({f'= gj )=P(& T and a parametel, controlling the structure of patterns. The value

= —¢&}'). Hence there is no correlation betweleand] sites  of p s fixed. (a) For smallp, there are three phases: paramagretic
of uth patterns and embedded patterns correspond to “ranetrieval R, and ferromagnetic with finite overla’. (b) For large
dom patterns.” On the other hand, for the casdgf-, we  p, there appears a ferromagnetic phase without retrieval dfder
obtainP(&f'= — &) =0. Namely, the value of{" is same as and the retrieval phase in the smplkase is replaced by the spin-
that of £ with probability one. Applying Eq.(4) to all glass phase.

nearest-neighbor paixsj ), we obtain the probability distri-

bution for thexth pattern as Ill. GENERIC QUALITATIVE PHASE DIAGRAM

Before we explain our analysis of maximum number of
1 Jo embedded patterns, in this section, we briefly review the re-
BN N <.E> &N, (6)  sults by Nishimorietal. [4]. Note that their treatments,
Zo 0) P4l namely, the gauge transformations and the Peierls arguments
\/B are applied to not only the two-dimensional systems but also
the systems in arbitrary dimension. Figure 2 shows the quali-

whereZy(Jo/+/p) is the normalization factor given by tative phase d|agr_am with axes of temperatlirand a pa-
rameterJ, controlling the structure of patterns for a fixed
value ofp. In general, this system has three phases: paramag-
Zo ﬁ :2 ex ﬁ 2 gE . (7) netic (P), ferromagneticF), and retrievalR) [or spin glas$
Jp) @& Jp @ ) phases. Each phase is characterized by the following three-

order parameters:
Supposing that each pattern is generated by(&dgndepen-

dently, a set of embedded pattef#'} is generated by the _ 1 S (s)2 9
. bttty =5 2 (S)% €)
following probability distribution: N =1
T ed 2 LS (s) (10
P{& ) =c]]| exp —= pew 8 Me=y 2 (S, 10
qeh=cll r{fp%aa) ®) N 2 (S
N
Here, the normalization factaris given by{Zq(Jo/\/p)}". mR=£ > £4S), (12)
Note that Eq(6) corresponds to the Boltzmann weight of the N =1

two-dimensional ferromagnetic Ising model on the square )
lattice whose interaction is given by \ig at temperature Where (---) means thermodynamic average. The above

1/J,. Hence embedded patterns are the same as snapshotdye-order parameters, me, and mg represent the
equilibrium Monte Carlo simulations for it. This Ising model Edwards-Anderson spin-glass order parameter, the ferromag-

was explicitly solved in5] and it is known that there is a Netic order parameter, and the overlap betweerytepat-
critical point atk =K .=0.44, whereK denotes the ratio of (e and the network staeS}, respectively. The paramag-
the temperature to the strength of the interaction. This modél€tic, ferromagnetic, retrieval, and spin-glass phase are
has a ferromagnetic solution fdg/+p>K,. and a paramag- characterized by the above three-order parameters as
netic solution forJy/\p<K,. From this fact, in our model ~MF~Mr=0; q>0m>0; g>0mg>0, and g=>0me
system, embedded patterns have a long-range ordei,for —MrR= 0. respectively. _ _

>KC\/B, on the other hand, there is no long-range correlation Applying the gauge transformations to this system, we

. . “obtain the internal enerdyE)] and the overlapmg] on the
for Jp< Kc\/ﬁ. Figure 1 shows typical three examples of em lines B(=1/T) = J, in the phase diagram as follows:
bedded patterns.

In the next section, we briefly review the features of the
phase diagrams of our model systems obtained by Nishimori [(E)]= pEo( B) , (12)
et al. [4]. Jp
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B. The case ofp=3

[mR]:mO(\/_B)' (13 We next analyze the case p&3. There is a good evi-
dence to show that the retrieval phase does not exist for this
case. Let us start by investigating if there is a state which has

whereEy(B/p) is the internal energy of the ferromagnetic & slmaller energy than the retrieval state. Substituthg
Ising model corresponding to the partition function =& (for all i) into Eq.(2) and averaging it over the distri-
Zo(B/\p), andmy(B/p) is the spontaneous magnetization bl_Jtlon (8), we obtain the energy per neuron of the pure re-
of the same model. Here, the expressioff of- ] means the ~trieval state
average over the distributiori8). Both Eq(B/p) and
mo(B/\/p) generally have singularities at some critical point
when spatial dimensionality exceeds one. Let us suppose that
Bl\p=K_ is the critical point. Then Eq$12) and(13) mean 2
that the internal energy and the overlap of our system have _ 2 1+ (p— Jo

. . S =—— (p—DCy| —=] ¢, (14
the same singularity ap/\p=K.. This implies a phase Jp Jp
transition and the boundary betwejgmg]+#0 and[mg]=0
crosses this point on the ling(=1/T)=J, (it is denoted by ~where C,(J,/+\/p) is the nearest-neighbor correlation func-
M in Fig. 2). We should notice that this point is also the tion of the ferromagnetic Ising model on the square lattice.

1
[ER]:N

1 p
-— pem gl el
\/5%;15.5155,

the regionF' is the ferromagnetic phase with finite overlap.
It is important to notice that this system is not meaningful as \/B
an associative memory fal,>K\/p, since embedded pat- _
terns have a long-range ferromagnetic order, as shown on t¥€ also rewrite the energy per neuron of the pure ferromag-
right-hand side of Fig. 1, and patterns become correlatefl€tiC state in terms oE4(Jo/+/p). SubstitutingS =1 (for all
each other. With this fact in mind, we do not regard thisi) into Eq.(2) and averaging it over the distributidf), we
region as a retrieval phase. When the valugdficreases, obtain
the critical pointJ,=K.\/p moves to right. On the other D
hand, by using the Peierls argument, the ferromagnetic phase [E ]:i _i 2 E gren :_2\/50 ﬁ
still exists in almost the same region. Taking those facts into FTN Jp @ i=n >t ! Jp/
account, there exists a critical number of patteppsabove (16)
which (p>p.) the ferromagnetic phase is split into two re-
gions, that is, the ferromagnetic phase with finite overlap We next investigate the properties of the function
(F') and the ferromagnetic phase without retrieval ofer ~ C1(Jo//p). Itis written in terms of the partition functiot¥)
At the same time, the retrieval phase in the smatlase is as follows:
replaced by the spin-glass phase because the region with fi-
nite overlap is limited toF' [Fig. 2(b)]. In summary, there
exists a critical number of patterng, below which (@ Ca \/_B ~9N PR /\/5)
<p.) the retrieval phase exists there, if any, while for 0
>Pe the retrieval phase vanishes and this network cannoy ig important to bear in mind that Iag,(J,/+/p) is explicitly
retrieve embedded patterns: _ solved in[5] as follows:

However, the value op. is not yet evaluated quantita-
tively at all in [4]. Following this section, we investigate it, ( Jo) ( 230)
especially in the case of a two-dimensional system on the —logZ,| —|=Ilog| 2 cosh—
square lattice. N \/B \/5

critical point of the embedded patterns. The explicit form ofC, is
When the value op is small, a typical phase diagram is
given by Fig. Za). In this case, it is possible that the retrieval ( Jo> 1 2 i p( Jo E i ) 15
phase exists in the region denoted Ryln the same figure, 1 \/B ] ( Jo) & Sic \/B £y Si¢i
ol =

(17

Jo) 1 9l0gZy(Jo/\p)

1 T (T
+—f J l0g(1—4k coSwwy)
IV. ANALYSIS OF THE SYSTEM 2a7%Jo Jo

A. The case ofp=1 Xdw; dwy, (18

We begin with the case @f=1. In this case, the system is
identical to the ferromagnetic Ising model and the retrieva
solution of the system corresponds to the ferromagnetic so-

|vvhere

lution of the ferromagnetic Ising model. In the case of the 2= tanr(ZJO/JB) (19
square lattice, the critical temperature of the ferromagnetic cosi2Jy/\p)

Ising model isT.=2.27, therefore, the system has a retrieval

solution atT<T,. Substituting 2 cosja=1/2«|cosw,| into Eq. (18) and using

016124-3
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FIG. 3. The shape of the correlation functi@q(x).

2
J log(2 coshu—2 cosw)dw=27pu, (20
0

_ —1 — 2__ -
p=cosh “y=log(y+yy°—1), vy 4x|coswq|’

(21)

we obtain

L z(J°> | (2 hzﬁ)
—logZ,| —= | =log| 2 cos
NTET p Jp
1fw| L TG TSt erd
+Eoog§(+ —(4k)“sint @)de.

(22

Substituting Eq.(22) into the right-hand side of Eq17),
explicit solution ofC;(Jo/+/p) is written by

Cl(J—O =Ecoth2ﬁ~ 1+EK£L , (23
W/ 2\
wherelL is the complete elliptic integral, namely,
wl2 de
=
with k;=4« and
Ki=2tanﬁ2—\/\]60—l. (25)

Figure 3 shows the shape of E@3). From Eqs.(14), (16),

and(23), we obtain rigorous values of grand state energies o

the pure retrieval and the pure ferromagnetic states.

PHYSICAL REVIEW E 65 016124

As CIl is a monotonically increasing function amzfl(l)
= (see Fig. 3, Eq.(26) leads to

J
2>cit

VP

whereC; ! denotes the inverse of the functi@. We find

that the pure ferromagnetic state has a smaller energy than
the pure retrieval one as long as this condition is satisfied. As
Jo is finite, p=3 must be satisfied becau€g * is a mono-
tonically increasing function anftl’l(l)zoo. Further, it is
easy to confirm the following inequality:

I([Er]—[ERD _
ap

Taking into accountEg]—[Eg]<0 under the conditio27)
andp=3, [E¢] gets smaller relatively as gets larger. As a
result, the pure ferromagnetic state has a smaller energy than
the pure retrieval one fof =0, J,>U\/p, andp=3. The
value ofU is 0.38 forp=3, andU<0.38 forp>3 because

of the monotonically increasing property @‘Il. Note that

U is always less thaK.=0.44.

We investigate the energy landscape around the pure re-
trieval state further. Let us calculate the energy increase per
interaction when the state changes from the pure retrieval
state. The energy stored in an interaction is given by

1 f—
5l u 0

0. (29)

1 p
—Jijasj=—75;l EHErSS . (29)

SubstitutingS = &', S;=¢; into Eq. (29), we obtain the en-
ergy stored between thi¢h andjth neurons of the network
retrieving 1th pattern completely. In the same way, substitut-
ing S=&, Sj=— & into Eq. (29) gives the energy of the
interaction for the case where tlith neuron changes from
the retrieval state. Subtracting the former from the latter, and
averaging it over the distributio(B), we obtain the energy
increase per interaction when the state changes from the re-

trieval state,
\/B .

(30

The value of dEg] is always positive, and it is expected that
the energy increases on the average when the state changes
from the pure retrieval state. We estimate the energies of the
Finite overlap states as follows. Latbe the number of neu-
rons whose states are opposite to the retrieval states. The
relation betweem andmg is given by

[dER]=

2 Q Ll 2
N ,;1 gretg éjl—7p| 1+(p—1)Cy

Now we calculate the condition that the pure ferromag-
netic state has a smaller energy than the retrieval state, that is
to say, the condition fof Ex]>[Eg]. We rewrite this in- = . (31
equality by using Eqs(14) and(16), then we obtain N

If nis not large, the number of interactions between the
retrieval state and opposite state is expected to be about 4
because the number of nearest-neighbor neurons is 4 and

! <C
-1

Jo

P

<1. (26)

016124-4
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mg 1r 7
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FIG. 4. The average energisof the retrieval states with over- 0 01 0.2 03 04

lap mg. The parameter values ape- 3 andJo\/§=O.39. The error JoND

bars are results of the numerical simulation in which the size of

network is N=100x 100, and calculated by averaging of >10 FIG. 5. The minimum value gf that is satisfied with Eq36) as

samples. The line shows the result from E2g). a function of the parametel,//p, which determines the structure
of patterns.

neurons whose states are opposite to the retrieval states lie

sparsely in almost all cases. Therefore, the energy of thF{A(d Er)}2]

system per neuron whose overlamig is expected to be —_—

[dEgr]?
2 4
B 4n _ Jo Jo
[Emg]=[Erl+ y[dERI=[Er]+2(1—mg)[dEg]. (p—1){ 1+(p—2)Cys| —=| —(p—1)C4| —=
Jp Jp
(32) = 2 J ) .
14+2(p—1)Cy| —| +(p—1)2C —°>
Figure 4 shows the result of humerical simulation and com- (p ! \/B P ! \/B

pares it with Eq(32). We set parameter values ps3 and (34)
Jo/\p=0.39 (>U) at the simulation. We generate >10
sample states for each value of; and evaluate[EmR].

Equation(32) agrees with the result of the simulation near
mgr=1, although it does not agree with the simulations for
the case of smalng. This is clearly because the number of
interactions between the retrieval state and opposite state is 9 [[{A(d Er)}%]
smaller than # for largen. Regardless of it, the energy tends ap [dER]?

to increase asg gets smaller, and the state neag=1 is

likely the smallest energy among the finite overlap states.l.his means that the more the valuegogets large, the more

Almost the same argument can be applied to the ferromag[-he energy is likely to decrease when the state changes from

netic state, and the state neag=1 is the smallest energy the retrieval state, although it increases on the average.

among the ferromagnetic order. 1_'ak|ng mto accolik] Therefore, the pure retrieval state becomes unstable for large
~[Er], the energy of ferromagnetic order is expected to b . We can roughly estimate the valuepfor which the pure

smaller than tha’; of retrieval order as long@s3 andJ, retrieval state gets unstable by
>U+/p are satisfied.
We also investigate the stability of the pure retrieval state. )
The variance oflEg is given by [{A(dEg)} ]>1_ (36)
[dER]?

Partially differentiating the above equation pythe value of
C, is fixed), we obtain the following inequality:

(39

[{A(dER)}?]=[dER] ~[dEr]? , N N
5 In Fig. 5, we plot the minimum value gf that is satisfied
4(p—1) 0 with Eq. (36). For example, Eq(36) is satisfied withp=8
- T[ 1+(p—2)C1(\/—6) for Jo/\/p=0.43. Note that this is probably overestimating
and the value op is likely smaller. We confirm this argument
Jo 4 in numerical simulations of the dynamics B+ 0. Figure 6
—(p—DCy| =] - (33)  shows a typical example of how the overlag depends on
\/5 the Monte Carlo step in computer simulations, in whigh
=100x 100 andJ,//p=0.43. The state of network starts
Using Eqgs(14) and(33), the ratio off dEg]? to this variance  with the embedded pattern itself. In these simulations, the
is obtained by pure retrieval state is already unstable jior 3, and the net-
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FIG. 7. In the case op=3, U is smaller tharKc\/B and the
region of Jo>U+p at T=0 is not retrieval phase. Therefore, the
boundary of mg]=0 like L, is prohibited and it should be like;.

FIG. 6. The typical example of how the overlag, depends on
the Monte Carlo stepin Monte Carlo simulations af=0. We set

the system size and the parameterNss 100x 100 andJy/+/p
=0.43, respectively. . CONCLUSION

work falls into a certain local minimum neang=1. This In this paper, we investigated the maximum number of
implies that the pure retrieval state is no longer stable foembedded patterns in the two-dimensional Hopfield model
p=3. storing structured patterns. As a result, we found that there
Taking all the above results into account, we show thagxists the retrieval phase fpre<2, however, it does not exist
there is no retrieval phase f=3. As we have seerl) is  for p=3. In other words, this system cannot retrieve more
always smaller thark .=0.44 for p=3, and the ferromag- than three patterns. This result agrees with a consideration of
netic state has smaller energy than the retrieval statdfor networks with randomly diluted synapses, in whiph is
>U+/p. Moreover, the pure retrieval state is no longer stableproportional to the average connectivity per neuf@).
for p=3. From those results, we conclude that the region oNamely, we can see from this argument that the valupof
Jo>Uyp at T=0 is not a retrieval phase. Therefore, the for our network is finite because the average connectivity per
boundary of[mg]=0 is prohibited from landing at, neuron is four(finite nqmbe}. However, our result is more
<K\/p on thed, axis like L, in Fig. 7, and it should land at  Strict than that from this argument.
Jo=K¢\/p from pointM vertically like L. Hence, there is no 'V'Ofeo"eF pc=“2 is satisfied W'th,, any va]ge Q.IOZ even
retrieval phase in the regiod,<K,\p (for all T) because the conventional randpm patterns.” In adqmon, itis known
the region with finite overlap is limited aly>K.yp. As a that the storage capacity of the net_vvork with spatially corre-
result, the phase diagram should be like Figh)2and the lated patterns is lower than that with random patterns. This

retrieval phase does not exist for the casamaf3 implies that the smallness of the value @f is due to the
P Pois. dimensionality two of the network rather than the structure
of embedded patterns. This argument also implies that al-
C. The case ofp=2

though there are several modifications in order to improve
For the case op=2, Figs. 5 and 6 imply that the pure storage capacity with spatially correlated pattefsse[7],

retrieval state is stable, although it is possible that there exfor example, these modifications are not expected to be re-
ists a state, except the ferromagnetic state, whose energy igarkable improvements for our model system.
smaller than that of the retrieval state. Hence, the retrieval From all the above arguments, we conclude that storage
state is expected to be a stable or metastable one for th@@pacity of associative memory is strongly restricted by the
case. However, it is very difficult to conclude whether thespatial structure of the network.
retrieval state has the minimum energy or not, because the
Hamiltonian of this system has a very complicated energy ACKNOWLEDGMENTS
landscape. In order to evaluate the grand state energy of it,
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