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Storage capacity of two-dimensional neural networks

Shinsuke Koyama*
Complex Systems Engineering, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo 8628, Japan

~Received 8 May 2001; revised manuscript received 28 September 2001; published 19 December 2001!

We investigate the maximum number of embedded patterns in the two-dimensional Hopfield model. The
grand state energies of two specific network states, namely, the energies of the pure-ferromagnetic state and the
state of specific one stored pattern are calculated exactly in terms of the correlation function of the ferromag-
netic Ising model. We also investigate the energy landscape around them and the stability of the pure retrieval
state. Taking into account the qualitative features of the phase diagrams obtained by Nishimori, Whyte, and
Sherrington@Phys. Rev. E51, 3628 ~1995!#, we conclude that the network cannot retrieve more than three
patterns.

DOI: 10.1103/PhysRevE.65.016124 PACS number~s!: 02.50.2r

I. INTRODUCTION

The Hopfield model@1# is one of the simplest mathemati-
cal models which explains associative memory. This model
is characterized by binary state neurons and each neuron is
represented by Ising spin. In this model system, arbitrary two
neurons interact with each othervia the so-called Hebb rule.
The Hebb rule is one of the standard learning rules of the
patternsj i

m ( i 51, . . . ,N; m51, . . . ,p) and determines the
strength of the interactionJi j between thei and j th neurons,
say,Si andSj , as

Ji j 5
1

N (
m

j i
mj j

m , ~1!

where m means the number of embedded patterns andN
denotes the number of neurons. These features have been
deeply investigated by statistical mechanics@2,3#. Actually,
up to now, various extensions and generalizations of the
Hopfield model were proposed and these properties were in-
vestigated from a statistical mechanical point of view~see,
for example@3#!. However, little is known about the proper-
ties of the Hopfield model in which the length of interactions
Ji j is restricted to the nearest-neighbor neurons. By the anal-
ogy to the spin system in statistical mechanics, we call this
type of the Hopfield model thefinite-dimensional Hopfield
model. Inspired by the study of Nishimoriet al. @4#, in this
paper, we consider the finite-dimensional Hopfield model
storing structured patterns. In general, it is hard to analyze
such finite-dimensional systems explicitly. However, one can
derive several rigorous results of thermodynamic properties
of the system with the assistance of the Pierls arguments and
the gauge transformations@4#. Although the qualitative fea-
tures of the phase diagrams of the system became clear by
these analyses, nobody has yet succeeded in deriving their
quantitative behavior at all. In this paper, we analyze the
storage capacity of the system quantitatively. We restrict our-
selves to the case of two-dimensional system on the square
lattice.

This paper is organized as follows. In Sec. II, we explain
our model system. In Sec. III, we briefly review the qualita-

tive features of the phase diagram obtained by Nishimori
et al. @4#. In Sec. IV, we analyze the storage capacity of our
model system. Section V is devoted to discussion of all the
results that we obtain.

II. DEFINITION OF THE SYSTEM

In this section, we define our model systems. The Hamil-
tonian of the system is given as

H52(̂
i j &

Ji j SiSj , ~2!

whereSi ( i 51, . . . ,N) are the states of the neuron taking
binary value61, andJi j is the strength of the interaction
betweenSi andSj . The summation(^ i j & appearing in Eq.~2!
runs over nearest-neighbor neurons on a square lattice. We
chose theshort-rangeHebb rule as an interaction which is
given by

Ji j 5
1

Ap
(
m51

p

j i
mj j

m ~3!

for the nearest-neighbor siteŝi j & and Ji j 50 otherwise.
Here, p is the number of embedded patterns andj i

m5
61 (m51, . . . ,p; i 51, . . . ,N). Let us consider the prob-
ability distribution of a set of patterns$j i

m%([$j i
mu i

51, . . . ,N;m51, . . . ,p%). We suppose that the probability
that arbitrary nearest-neighbor sites of themth pattern arej i

m

andj j
m , respectively, is proportional to

expS J0

Ap
j i

mj j
mD , ~4!

where the parameterJ0 controls the degree of the correlation
between arbitrary nearest-neighbor sites. Let us writeP(j i

m

5j j
m) and P(j i

m52j j
m) as the probability ofj i

m5j j
m and

j i
m52j j

m , respectively. Then, the ratio of the former to the
later is given by

P~j i
m5j j

m!

P~j i
m52j j

m!
5expS 2J0

Ap
D . ~5!
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For the case ofJ050, Eq. ~5! becomesP(j i
m5j j

m)5P(j i
m

52j j
m). Hence there is no correlation betweeni and j sites

of mth patterns and embedded patterns correspond to ‘‘ran-
dom patterns.’’ On the other hand, for the case ofJ0→`, we
obtainP(j i

m52j j
m)50. Namely, the value ofj i

m is same as
that of j j

m with probability one. Applying Eq.~4! to all
nearest-neighbor pairŝi j &, we obtain the probability distri-
bution for themth pattern as

1

Z0S J0

Ap
D expS J0

Ap
(̂
i j &

j i
mj j

mD , ~6!

whereZ0(J0 /Ap) is the normalization factor given by

Z0S J0

Ap
D 5(

$j i %
expS J0

Ap
(̂
i j &

j ij j D . ~7!

Supposing that each pattern is generated by Eq.~6! indepen-
dently, a set of embedded patterns$j i

m% is generated by the
following probability distribution:

P~$j i
m%!5c )

m51

p

expS J0

Ap
(̂
i j &

j i
mj j

mD . ~8!

Here, the normalization factorc is given by$Z0(J0 /Ap)%p.
Note that Eq.~6! corresponds to the Boltzmann weight of the
two-dimensional ferromagnetic Ising model on the square
lattice whose interaction is given by 1/Ap at temperature
1/J0. Hence embedded patterns are the same as snapshots of
equilibrium Monte Carlo simulations for it. This Ising model
was explicitly solved in@5# and it is known that there is a
critical point atK5Kc50.44, whereK denotes the ratio of
the temperature to the strength of the interaction. This model
has a ferromagnetic solution forJ0 /Ap.Kc and a paramag-
netic solution forJ0 /Ap,Kc . From this fact, in our model
system, embedded patterns have a long-range order forJ0

.KcAp, on the other hand, there is no long-range correlation
for J0,KcAp. Figure 1 shows typical three examples of em-
bedded patterns.

In the next section, we briefly review the features of the
phase diagrams of our model systems obtained by Nishimori
et al. @4#.

III. GENERIC QUALITATIVE PHASE DIAGRAM

Before we explain our analysis of maximum number of
embedded patterns, in this section, we briefly review the re-
sults by Nishimori et al. @4#. Note that their treatments,
namely, the gauge transformations and the Peierls arguments
are applied to not only the two-dimensional systems but also
the systems in arbitrary dimension. Figure 2 shows the quali-
tative phase diagram with axes of temperatureT and a pa-
rameterJ0 controlling the structure of patterns for a fixed
value ofp. In general, this system has three phases: paramag-
netic (P), ferromagnetic (F), and retrieval~R! @or spin glass#
phases. Each phase is characterized by the following three-
order parameters:

q5
1

N (
i 51

N

^Si&
2, ~9!

mF5
1

N (
i 51

N

^Si&, ~10!

mR5
1

N (
i 51

N

j i
m^Si&, ~11!

where ^•••& means thermodynamic average. The above
three-order parametersq, mF , and mR represent the
Edwards-Anderson spin-glass order parameter, the ferromag-
netic order parameter, and the overlap between themth pat-
tern and the network state$Si%, respectively. The paramag-
netic, ferromagnetic, retrieval, and spin-glass phase are
characterized by the above three-order parameters asq
5mF5mR50; q.0,mF.0; q.0,mR.0, and q.0,mF
5mR50, respectively.

Applying the gauge transformations to this system, we
obtain the internal energy@^E&# and the overlap@mR# on the
lines b(51/T)5J0 in the phase diagram as follows:

@^E&#5pE0S b

Ap
D , ~12!

FIG. 1. Typical examples of embedded patterns. The size of
patterns is 1003100. From the left to the right, the values of pa-
rameterJ0 /Ap are 0.10, 0.42, and 0.60.

FIG. 2. The qualitative phase diagram with axes of temperature
T and a parameterJ0 controlling the structure of patterns. The value
of p is fixed.~a! For smallp, there are three phases: paramagneticP,
retrievalR, and ferromagnetic with finite overlapF8. ~b! For large
p, there appears a ferromagnetic phase without retrieval orderF,
and the retrieval phase in the small-p case is replaced by the spin-
glass phase.
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@mR#5m0S b

Ap
D , ~13!

whereE0(b/Ap) is the internal energy of the ferromagnetic
Ising model corresponding to the partition function
Z0(b/Ap), andm0(b/Ap) is the spontaneous magnetization
of the same model. Here, the expression of@•••# means the
average over the distribution~8!. Both E0(b/Ap) and
m0(b/Ap) generally have singularities at some critical point
when spatial dimensionality exceeds one. Let us suppose that
b/Ap5Kc is the critical point. Then Eqs.~12! and~13! mean
that the internal energy and the overlap of our system have
the same singularity atb/Ap5Kc . This implies a phase
transition and the boundary between@mR#Þ0 and@mR#50
crosses this point on the lineb(51/T)5J0 ~it is denoted by
M in Fig. 2!. We should notice that this point is also the
critical point of the embedded patterns.

When the value ofp is small, a typical phase diagram is
given by Fig. 2~a!. In this case, it is possible that the retrieval
phase exists in the region denoted byR. In the same figure,
the regionF8 is the ferromagnetic phase with finite overlap.
It is important to notice that this system is not meaningful as
an associative memory forJ0.KcAp, since embedded pat-
terns have a long-range ferromagnetic order, as shown on the
right-hand side of Fig. 1, and patterns become correlated
each other. With this fact in mind, we do not regard this
region as a retrieval phase. When the value ofp increases,
the critical point J05KcAp moves to right. On the other
hand, by using the Peierls argument, the ferromagnetic phase
still exists in almost the same region. Taking those facts into
account, there exists a critical number of patternspc above
which (p.pc) the ferromagnetic phase is split into two re-
gions, that is, the ferromagnetic phase with finite overlap
(F8) and the ferromagnetic phase without retrieval order~F!.
At the same time, the retrieval phase in the small-p case is
replaced by the spin-glass phase because the region with fi-
nite overlap is limited toF8 @Fig. 2~b!#. In summary, there
exists a critical number of patternspc below which (p
,pc) the retrieval phase exists there, if any, while forp
.pc the retrieval phase vanishes and this network cannot
retrieve embedded patterns.

However, the value ofpc is not yet evaluated quantita-
tively at all in @4#. Following this section, we investigate it,
especially in the case of a two-dimensional system on the
square lattice.

IV. ANALYSIS OF THE SYSTEM

A. The case ofpÄ1

We begin with the case ofp51. In this case, the system is
identical to the ferromagnetic Ising model and the retrieval
solution of the system corresponds to the ferromagnetic so-
lution of the ferromagnetic Ising model. In the case of the
square lattice, the critical temperature of the ferromagnetic
Ising model isTc52.27, therefore, the system has a retrieval
solution atT,Tc .

B. The case ofpÐ3

We next analyze the case ofp>3. There is a good evi-
dence to show that the retrieval phase does not exist for this
case. Let us start by investigating if there is a state which has
a smaller energy than the retrieval state. SubstitutingSi

5j i
1 ~for all i ) into Eq. ~2! and averaging it over the distri-

bution ~8!, we obtain the energy per neuron of the pure re-
trieval state

@ER#5
1

N F2
1

Ap
(̂
i j &

(
m51

p

j i
mj j

mj i
1j j

1G
52

2

Ap
H 11~p21!C1S J0

Ap
D 2J , ~14!

whereC1(J0 /Ap) is the nearest-neighbor correlation func-
tion of the ferromagnetic Ising model on the square lattice.
The explicit form ofC1 is

C1S J0

Ap
D 5

1

Z0S J0

Ap
D (

$j i %
j ij j expS J0

Ap
(̂
i j &

j ij j D . ~15!

We also rewrite the energy per neuron of the pure ferromag-
netic state in terms ofC1(J0 /Ap). SubstitutingSi51 ~for all
i ) into Eq. ~2! and averaging it over the distribution~8!, we
obtain

@EF#5
1

N F2
1

Ap
(̂
i j &

(
m51

p

j i
mj j

mG522ApC1S J0

Ap
D .

~16!

We next investigate the properties of the function
C1(J0 /Ap). It is written in terms of the partition function~7!
as follows:

C1S J0

Ap
D 5

1

2N

] logZ0~J0 /Ap!

]~J0 /Ap!
. ~17!

It is important to bear in mind that logZ0(J0 /Ap) is explicitly
solved in@5# as follows:

1

N
logZ0S J0

Ap
D 5 logS 2 cosh

2J0

Ap
D

1
1

2p2E0

pE
0

p

log~124k cosv1v2!

3dv1 dv2 , ~18!

where

2k5
tanh~2J0 /Ap!

cosh~2J0 /Ap!
. ~19!

Substituting 2 coshm51/2kucosv1u into Eq. ~18! and using
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E
0

2p

log~2 coshm22 cosv!dv52pm, ~20!

m5cosh21 y5 log~y1Ay221!, y5
1

4kucosv1u
,

~21!

we obtain

1

N
logZ0S J0

Ap
D 5 logS 2 cosh

2J0

Ap
D

1
1

2pE0

p

log
1

2
~11A12~4k!2 sin2 w!dw.

~22!

Substituting Eq.~22! into the right-hand side of Eq.~17!,
explicit solution ofC1(J0 /Ap) is written by

C1S J0

Ap
D 5

1

2
coth

2J0

Ap
•S 11

2

p
k18L D , ~23!

whereL is the complete elliptic integral, namely,

L5E
0

p/2 dw

A12k1
2 sin2 w

, ~24!

with k154k and

k1852 tanh2
2J0

Ap
21. ~25!

Figure 3 shows the shape of Eq.~23!. From Eqs.~14!, ~16!,
and~23!, we obtain rigorous values of grand state energies of
the pure retrieval and the pure ferromagnetic states.

Now we calculate the condition that the pure ferromag-
netic state has a smaller energy than the retrieval state, that is
to say, the condition for@ER#.@EF#. We rewrite this in-
equality by using Eqs.~14! and ~16!, then we obtain

1

p21
,C1S J0

Ap
D ,1. ~26!

As C1
21 is a monotonically increasing function andC1

21(1)
5` ~see Fig. 3!, Eq. ~26! leads to

J0

Ap
.C1

21S 1

p21D[U, ~27!

whereC1
21 denotes the inverse of the functionC1. We find

that the pure ferromagnetic state has a smaller energy than
the pure retrieval one as long as this condition is satisfied. As
J0 is finite, p>3 must be satisfied becauseC1

21 is a mono-
tonically increasing function andC1

21(1)5`. Further, it is
easy to confirm the following inequality:

]~@EF#2@ER# !

]p
,0. ~28!

Taking into account@EF#2@ER#,0 under the condition~27!
andp>3, @EF# gets smaller relatively asp gets larger. As a
result, the pure ferromagnetic state has a smaller energy than
the pure retrieval one forT50, J0.UAp, and p>3. The
value ofU is 0.38 forp53, andU,0.38 for p.3 because
of the monotonically increasing property ofC1

21. Note that
U is always less thanKc50.44.

We investigate the energy landscape around the pure re-
trieval state further. Let us calculate the energy increase per
interaction when the state changes from the pure retrieval
state. The energy stored in an interaction is given by

2Ji j SiSj52
1

Ap
(
m51

p

j i
mj j

mSiSj . ~29!

SubstitutingSi5j i
1 , Sj5j j

1 into Eq. ~29!, we obtain the en-
ergy stored between thei th and j th neurons of the network
retrieving 1th pattern completely. In the same way, substitut-
ing Si5j i

1 , Sj52j j
1 into Eq. ~29! gives the energy of the

interaction for the case where thej th neuron changes from
the retrieval state. Subtracting the former from the latter, and
averaging it over the distribution~8!, we obtain the energy
increase per interaction when the state changes from the re-
trieval state,

@dER#5F 2

Ap
(
m51

p

j i
mj j

mj i
1j j

1G5
2

Ap
H 11~p21!C1S J0

Ap
D 2J .

~30!

The value of@dER# is always positive, and it is expected that
the energy increases on the average when the state changes
from the pure retrieval state. We estimate the energies of the
finite overlap states as follows. Letn be the number of neu-
rons whose states are opposite to the retrieval states. The
relation betweenn andmR is given by

n

N
5

12mR

2
. ~31!

If n is not large, the number of interactions between the
retrieval state and opposite state is expected to be about 4n
because the number of nearest-neighbor neurons is 4 and

FIG. 3. The shape of the correlation functionC1(x).
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neurons whose states are opposite to the retrieval states lie
sparsely in almost all cases. Therefore, the energy of the
system per neuron whose overlap ismR is expected to be

@EmR
#5@ER#1

4n

N
@dER#5@ER#12~12mR!@dER#.

~32!

Figure 4 shows the result of numerical simulation and com-
pares it with Eq.~32!. We set parameter values asp53 and
J0 /Ap50.39 (.U) at the simulation. We generate 105

sample states for each value ofmR and evaluate@EmR
#.

Equation~32! agrees with the result of the simulation near
mR51, although it does not agree with the simulations for
the case of smallmR . This is clearly because the number of
interactions between the retrieval state and opposite state is
smaller than 4n for largen. Regardless of it, the energy tends
to increase asmR gets smaller, and the state nearmR51 is
likely the smallest energy among the finite overlap states.
Almost the same argument can be applied to the ferromag-
netic state, and the state nearmF51 is the smallest energy
among the ferromagnetic order. Taking into account@ER#
.@EF#, the energy of ferromagnetic order is expected to be
smaller than that of retrieval order as long asp>3 andJ0

.UAp are satisfied.
We also investigate the stability of the pure retrieval state.

The variance ofdER is given by

@$D~dER!%2#5@dER
2 #2@dER#2

5
4~p21!

p H 11~p22!C1S J0

Ap
D 2

2~p21!C1S J0

Ap
D 4J . ~33!

Using Eqs.~14! and~33!, the ratio of@dER#2 to this variance
is obtained by

@$D~dER!%2#

@dER#2

5

~p21!H 11~p22!C1S J0

Ap
D 2

2~p21!C1S J0

Ap
D 4J

112~p21!C1S J0

Ap
D 2

1~p21!2C1S J0

Ap
D 4 .

~34!

Partially differentiating the above equation byp ~the value of
C1 is fixed!, we obtain the following inequality:

]

]p S @$D~dER!%2#

@dER#2 D .0. ~35!

This means that the more the value ofp gets large, the more
the energy is likely to decrease when the state changes from
the retrieval state, although it increases on the average.
Therefore, the pure retrieval state becomes unstable for large
p. We can roughly estimate the value ofp for which the pure
retrieval state gets unstable by

@$D~dER!%2#

@dER#2
.1. ~36!

In Fig. 5, we plot the minimum value ofp that is satisfied
with Eq. ~36!. For example, Eq.~36! is satisfied withp>8
for J0 /Ap50.43. Note that this is probably overestimating
and the value ofp is likely smaller. We confirm this argument
in numerical simulations of the dynamics atT50. Figure 6
shows a typical example of how the overlapmR depends on
the Monte Carlo step in computer simulations, in whichN
51003100 andJ0 /Ap50.43. The state of network starts
with the embedded pattern itself. In these simulations, the
pure retrieval state is already unstable forp53, and the net-

FIG. 4. The average energiesE of the retrieval states with over-
lap mR . The parameter values arep53 andJ0Ap50.39. The error
bars are results of the numerical simulation in which the size of
network is N51003100, and calculated by averaging of 105

samples. The line shows the result from Eq.~32!.
FIG. 5. The minimum value ofp that is satisfied with Eq.~36! as

a function of the parameterJ0 /Ap, which determines the structure
of patterns.
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work falls into a certain local minimum nearmR51. This
implies that the pure retrieval state is no longer stable for
p>3.

Taking all the above results into account, we show that
there is no retrieval phase ifp>3. As we have seen,U is
always smaller thanKc50.44 for p>3, and the ferromag-
netic state has smaller energy than the retrieval state forJ0

.UAp. Moreover, the pure retrieval state is no longer stable
for p>3. From those results, we conclude that the region of
J0.UAp at T50 is not a retrieval phase. Therefore, the
boundary of @mR#50 is prohibited from landing atJ0

,KcAp on theJ0 axis likeL2 in Fig. 7, and it should land at
J05KcAp from pointM vertically likeL1. Hence, there is no
retrieval phase in the regionJ0,KcAp ~for all T) because
the region with finite overlap is limited atJ0.KcAp. As a
result, the phase diagram should be like Fig. 2~b! and the
retrieval phase does not exist for the case ofp>3.

C. The case ofpÄ2

For the case ofp52, Figs. 5 and 6 imply that the pure
retrieval state is stable, although it is possible that there ex-
ists a state, except the ferromagnetic state, whose energy is
smaller than that of the retrieval state. Hence, the retrieval
state is expected to be a stable or metastable one for this
case. However, it is very difficult to conclude whether the
retrieval state has the minimum energy or not, because the
Hamiltonian of this system has a very complicated energy
landscape. In order to evaluate the grand state energy of it,
we should carry out simulated annealing , for example. How-
ever, up to now, we do not yet have reliable results. This will
be our future problem.

V. CONCLUSION

In this paper, we investigated the maximum number of
embedded patterns in the two-dimensional Hopfield model
storing structured patterns. As a result, we found that there
exists the retrieval phase forp<2, however, it does not exist
for p>3. In other words, this system cannot retrieve more
than three patterns. This result agrees with a consideration of
networks with randomly diluted synapses, in whichpc is
proportional to the average connectivity per neuron@6#.
Namely, we can see from this argument that the value ofpc
for our network is finite because the average connectivity per
neuron is four~finite number!. However, our result is more
strict than that from this argument.

Moreover,pc52 is satisfied with any value ofJ0, even
the conventional ‘‘random patterns.’’ In addition, it is known
that the storage capacity of the network with spatially corre-
lated patterns is lower than that with random patterns. This
implies that the smallness of the value ofpc is due to the
dimensionality two of the network rather than the structure
of embedded patterns. This argument also implies that al-
though there are several modifications in order to improve
storage capacity with spatially correlated patterns~see@7#,
for example!, these modifications are not expected to be re-
markable improvements for our model system.

From all the above arguments, we conclude that storage
capacity of associative memory is strongly restricted by the
spatial structure of the network.
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FIG. 7. In the case ofp>3, U is smaller thanKcAp and the
region of J0.UAp at T50 is not retrieval phase. Therefore, the
boundary of@mR#50 like L2 is prohibited and it should be likeL1.

FIG. 6. The typical example of how the overlapmR depends on
the Monte Carlo stept in Monte Carlo simulations atT50. We set
the system size and the parameter asN51003100 andJ0 /Ap
50.43, respectively.
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