565 research outputs found

    Level of Stress in Students with the Disturbance of Nasal Breathing and Comorbid Disorders

    Get PDF
    Background. The progressive increase of the number of schoolchildren with adaptation disorders and low level of health in recent years determines the need to assess the characteristics of the psychosomatic status in children and adolescents with various types of somatic pathology, including diseases of ENT organs, accompanied by nasal breathing disorders and hypoxia. It is also necessary to determine the severity of stress in children, for timely prevention and correction of these disorders.Aim: to assess the level of stress in schoolchildren with nasal breathing disorders against the background of nasal diseases and concomitant psychosomatic disorders.Materials and methods. 481 schoolchildren aged 12–17 (boys and girls) were examined. Nasal breathing disorders were assessed by a comprehensive ENT examination, including rhinoscopy, radiography of the sinuses, and olfactometry. The presence and severity of stress were determined by the questionnaire “Social factors and stress”.Results. We found that the high level of stress in children with nasal breathing disorders on the background of ENT pathology is more often associated with the high frequency and severity of psychosomatic symptoms: the presence of dorsalgia, asthenic syndrome, chronic headache and frequent episodes of abdominal pain. Moderately and significantly increased levels of stress associated with the presence of children with hypertension, asthenic syndrome, frequent abdominal pain, frequent pain in the cervical spine, panic disorders.Conclusions. Thus, the presence of certain psychosomatic complaints in children with nasal breathing disorders is directly related to the level of stress, which is important to take into account when planning preventive and corrective measures aimed at increasing the adaptive capacity and stress resistance of children. The studies illustrate the need to assess the psychosomatic status and the level of stress in schoolchildren with nasal breathing disorders taking into account their existing comorbid disorders of the psychosomatic spectrum

    Differential Form Valued Forms and Distributional Electromagnetic Sources

    Full text link
    Properties of a fundamental double-form of bi-degree (p,p)(p,p) for p0p\ge 0 are reviewed in order to establish a distributional framework for analysing equations of the form ΔΦ+λ2Φ=S\Delta \Phi + \lambda^2 \Phi = {\cal S} where Δ\Delta is the Hodge-de Rham operator on pp-forms Φ \Phi on R3{\bf R}^3. Particular attention is devoted to singular distributional solutions that arise when the source S {\cal S} is a singular pp-form distribution. A constructive approach to Dirac distributions on (moving) submanifolds embedded in R3{\bf R}^3 is developed in terms of (Leray) forms generated by the geometry of the embedding. This framework offers a useful tool in electromagnetic modeling where the possibly time dependent sources of certain physical attributes, such as electric charge, electric current and polarization or magnetization, are concentrated on localized regions in space.Comment: 40 page

    High frequency magnetic oscillations of the organic metal θ\theta-(ET)4_4ZnBr4_4(C6_6H4_4Cl2_2) in pulsed magnetic field of up to 81 T

    Full text link
    De Haas-van Alphen oscillations of the organic metal θ\theta-(ET)4_4ZnBr4_4(C6_6H4_4Cl2_2) are studied in pulsed magnetic fields up to 81 T. The long decay time of the pulse allows determining reliable field-dependent amplitudes of Fourier components with frequencies up to several kiloteslas. The Fourier spectrum is in agreement with the model of a linear chain of coupled orbits. In this model, all the observed frequencies are linear combinations of the frequency linked to the basic orbit α\alpha and to the magnetic-breakdown orbit β\beta.Comment: 6 pages, 4 figure

    Quantitative reconstructions of mid- to late holocene climate and vegetation in the north-eastern altai mountains recorded in lake teletskoye

    Get PDF
    © 2016 Elsevier B.V.We report the first high-resolution (20-50 years) mid- to late Holocene pollen records from Lake Teletskoye, the largest lake in the Altai Mountains, in south-eastern West Siberia. Generally, the mid- to late Holocene (the last 4250 years) vegetation of the north-eastern Altai, as recorded in two studied sediment cores, is characterised by Siberian pine-spruce-fir forests that are similar to those of the present day. A relatively cool and dry interval with July temperatures lower than those of today occurred between 3.9 and 3.6 ka BP. The widespread distribution of open, steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae reflects maximum deforestation during this interval. After ca. 3.5 ka BP, the coniferous mountain taiga spread significantly, with maximum woody coverage and taiga biome scores between ca. 2.7 and 1.6 ka BP. This coincides well with the highest July temperature (approximately 1 °C higher than today) intervals. A short period of cooling about 1.3-1.4 ka BP could have been triggered by the increased volcanic activity recorded across the Northern Hemisphere. A new period of cooling started around 1100-1150 CE, with the minimum July temperatures occurring between 1450 and 1800 CE

    Quantum oscillations in the linear chain of coupled orbits: the organic metal with two cation layers theta-(ET)(4)CoBr(4)(C(6)H(4)Cl(2))

    Full text link
    Analytical formulae for de Haas-van Alphen (dHvA) oscillations in linear chain of coupled two-dimensional (2D) orbits (Pippard's model) are derived systematically taking into account the chemical potential oscillations in magnetic field. Although corrective terms are observed, basic (alpha) and magnetic breakdown-induced (beta and 2beta - alpha) orbits can be accounted for by the Lifshits-Kosevich (LK) and Falicov-Stachowiak semiclassical models in the explored field and temperature ranges. In contrast, the 'forbidden orbit' beta - alpha amplitude is described by a non-LK equation involving a product of two classical orbit amplitudes. Furthermore, strongly non-monotonic field and temperature dependence may be observed for the second harmonics of basic frequencies such as 2alpha and the magnetic breakdown orbit beta + alpha, depending on the value of the spin damping factors. These features are in agreement with the dHvA oscillation spectra of the strongly 2D organic metal theta- theta-(ET)(4)CoBr(4)(C(6)H(4)Cl(2)).Comment: to be published in Europhysics Letters (2012

    Diffuse-Charge Dynamics in Electrochemical Systems

    Full text link
    The response of a model micro-electrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate, blocking electrodes which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The ``weakly nonlinear'' limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter ϵ=λD/L\epsilon = \lambda_D/L, where λD\lambda_D is the screening length and LL the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of λDL/D\lambda_D L / D (not λD2/D\lambda_D^2/D), where DD is the ionic diffusivity, but nonlinearity violates this common picture and introduce multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, L2/DL^2/D. In the ``strongly nonlinear'' regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multi-component electrolytes, and Faradaic processes.Comment: 10 figs, 26 pages (double-column), 141 reference

    Nonlinear electrochemical relaxation around conductors

    Full text link
    We analyze the simplest problem of electrochemical relaxation in more than one dimension - the response of an uncharged, ideally polarizable metallic sphere (or cylinder) in a symmetric, binary electrolyte to a uniform electric field. In order to go beyond the circuit approximation for thin double layers, our analysis is based on the Poisson-Nernst-Planck (PNP) equations of dilute solution theory. Unlike most previous studies, however, we focus on the nonlinear regime, where the applied voltage across the conductor is larger than the thermal voltage. In such strong electric fields, the classical model predicts that the double layer adsorbs enough ions to produce bulk concentration gradients and surface conduction. Our analysis begins with a general derivation of surface conservation laws in the thin double-layer limit, which provide effective boundary conditions on the quasi-neutral bulk. We solve the resulting nonlinear partial differential equations numerically for strong fields and also perform a time-dependent asymptotic analysis for weaker fields, where bulk diffusion and surface conduction arise as first-order corrections. We also derive various dimensionless parameters comparing surface to bulk transport processes, which generalize the Bikerman-Dukhin number. Our results have basic relevance for double-layer charging dynamics and nonlinear electrokinetics in the ubiquitous PNP approximation.Comment: 25 pages, 17 figures, 4 table

    High-mobility compensated semimetals, orbital magnetization, and umklapp scattering in bilayer graphene moire superlattices

    Get PDF
    Twist-controlled moire superlattices (MS) have emerged as a versatile platform in which to realize artificial systems with complex electronic spectra. Bernal-stacked bilayer graphene (BLG) and hexagonal boron nitride (hBN) form an interesting example of the MS that has recently featured a set of unexpected behaviors, such as unconventional ferroelectricity and electronic ratchet effect. Yet, the understanding of the BLG/hBN MS electronic properties has, at present, remained fairly limited. Here we develop a multi-messenger approach that combines standard magnetotransport techniques with low-energy sub-THz excitation to get insights into the properties of this MS. We show that BLG/hBN lattice alignment results in the emergence of compensated semimetals at some integer fillings of the moire bands separated by van Hove singularities where Lifshitz transition occurs. A particularly pronounced semimetal develops when 8 electrons reside in the moire unit cell, where coexisting high-mobility electron and hole systems feature a strong magnetoresistance reaching 2350 % already at B=0.25 T. Next, by measuring the THz-driven Nernst effect in remote bands, we observe valley splitting, pointing to an orbital magnetization characterized by a strongly enhanced effective g-factor of 340. Last, using THz photoresistance measurements, we show that the high-temperature conductivity of the BLG/hBN MS is limited by electron-electron umklapp processes. Our multi-facet analysis introduces THz-driven magnetotransport as a convenient tool to probe the band structure and interaction effects in vdW materials and provides a comprehension of the BLG/hBN MS

    Структура и лабораторная диагностика немедицинского потребления современных синтетических наркотических средств

    Get PDF
    The emergence of new synthetic narcotic drugs is noted all over the world. The situation causes significant difficulties for toxicologists, resuscitators, narcologists, and clinical laboratory diagnostics doctors due to the lack of available data on the clinical picture of poisoning by these compounds and laboratory diagnostic methods. In most cases, the clinical picture of drug intoxication or poisoning with new synthetic substances differs from the symptoms caused by previously known drugs, such as cocaine or opiates. Therefore, chemical toxicological research is one of the important aspects for establishing the fact of intoxication or poisoning.Во всем мире отмечается появление новых синтетических наркотических средств, что вызывает значительные трудности в оказании помощи больным для врачей-токсикологов, реаниматологов, наркологов и врачей клинической лабораторной диагностики, связанные с отсутствием доступных данных с описанием клинической картины отравлений подобными соединениями и необходимых методов лабораторной диагностики. Клиническая картина наркотического опьянения или отравления новыми синтетическими веществами в большинстве случаев отличается от симптомов, вызываемых ранее известными наркотическими средствами, такими как кокаин, опиаты. Поэтому химико-токсикологическое исследование является одним из важных аспектов для установления факта опьянения или отравления
    corecore