4,995 research outputs found

    Adsorbate induced enhancement of electrostatic non-contact friction

    Get PDF
    We study the non-contact friction between an atomic force microscope tip and a metal substrate in the presence of bias voltage. The friction is due to energy losses in the sample created by the electromagnetic field from the oscillating charges induced on the tip surface by the bias voltage. We show that the friction can be enhanced by many orders of magnitude if the ads orbate layer can support acoustic vibrations. The theory predicts the magnitude and the distance dependence of friction in a good agreement with recent puzzling non-contact friction experiment \cite{Stipe}. We demonstrate that even an isolated adsorbate can produce high enough friction to be measured experimentally.Comment: Published in PR

    Theory of friction: contribution from fluctuating electromagnetic field

    Full text link
    We calculate the friction force between two semi-infinite solids in relative parallel motion (velocity VV), and separated by a vacuum gap of width dd. The friction force result from coupling via a fluctuating electromagnetic field, and can be considered as the dissipative part of the van der Waals interaction. We consider the dependence of the friction force on the temperature TT, and present a detailed discussion of the limiting cases of small and large VV and dd.Comment: 15 pages, No figure

    Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems

    Get PDF
    . We consider the effect of an external bias voltage and the spatial variation of the surface potential, on the damping of cantilever vibrations. The electrostatic friction is due to energy losses in the sample created by the electromagnetic field from the oscillating charges induced on the surface of the tip by the bias voltage and spatial variation of the surface potential. A similar effect arises when the tip is oscillating in the electrostatic field created by charged defects in a dielectric substrate. The electrostatic friction is compared with the van der Waals friction originating from the fluctuating electromagnetic field due to quantum and thermal fluctuation of the current density inside the bodies. We show that the electrostatic and van der Waals friction can be greatly enhanced if on the surfaces of the sample and the tip there are two-dimension (2D) systems, e.g. a 2D-electron system or incommensurate layers of adsorbed ions exhibiting acoustic vibrations. We show that the damping of the cantilever vibrations due to the electrostatic friction may be of similar magnitude as the damping observed in recent experiments of Stipe \textit{et al} [B.C.Stipe, H.J.Mamin, T.D.Stowe, T.W.Kenny, and D.Rugar, Phys.Rev. Lett.% \textbf{87}, 0982001]. We also show that at short separation the van der Waals friction may be large enough to be measured experimentally.Comment: 11 pages, 2 figure

    How do liquids confined at the nanoscale influence adhesion?

    Full text link
    Liquids play an important role in adhesion and sliding friction. They behave as lubricants in human bodies especially in the joints. However, in many biological attachment systems they acts like adhesives, e.g. facilitating insects to move on ceilings or vertical walls. Here we use molecular dynamics to study how liquids confined at the nanoscale influence the adhesion between solid bodies with smooth and rough surfaces. We show that a monolayer of liquid may strongly affect the adhesion.Comment: 5 pages, 9 color figures. Some figures are in Postscript Level 3 format. Minimal changes with respect to the previous version. Added doi and reference to the published article also inside the pape

    Quantum-dot thermometry

    Full text link
    We present a method for the measurement of a temperature differential across a single quantum dot that has transmission resonances that are separated in energy by much more than the thermal energy. We determine numerically that the method is accurate to within a few percent across a wide range of parameters. The proposed method measures the temperature of the electrons that enter the quantum dot and will be useful in experiments that aim to test theory which predicts quantum dots are highly-efficient thermoelectrics.Comment: 3 pages, 4 Figure

    Universal features in sequential and nonsequential two-photon double ionization of helium

    Full text link
    We analyze two-photon double ionization of helium in both the nonsequential and sequential regime. We show that the energy spacing between the two emitted electrons provides the key parameter that controls both the energy and the angular distribution and reveals the universal features present in both the nonsequential and sequential regime. This universality, i.e., independence of photon energy, is a manifestation of the continuity across the threshold for sequential double ionization. For all photon energies, the energy distribution can be described by a universal shape function that contains only the spectral and temporal information entering second-order time-dependent perturbation theory. Angular correlations and distributions are found to be more sensitive to the photon energy. In particular, shake-up interferences have a large effect on the angular distribution. Energy spectra, angular distributions parameterized by the anisotropy parameters, and total cross sections presented in this paper are obtained by fully correlated time-dependent ab initio calculations.Comment: 12 pages, 8 figure

    Probing Electron Correlation via Attosecond XUV Pulses in the Two-Photon Double Ionization of Helium

    Full text link
    Recent experimental developments of high-intensity, short-pulse XUV light sources are enhancing our ability to study electron-electron correlations. We perform time-dependent calculations to investigate the so-called "sequential" regime (photon energy above 54.4 eV) in the two-photon double ionization of helium. We show that attosecond pulses allow to induce and probe angular and energy correlations of the emitted electrons. The final momentum distribution reveals regions dominated by the Wannier ridge break-up scenario and by post-collision interaction.Comment: 4 pages, 5 figure

    Evidence for the absence of regularization corrections to the partial-wave renormalization procedure in one-loop self energy calculations in external fields

    Full text link
    The equivalence of the covariant renormalization and the partial-wave renormaliz ation (PWR) approach is proven explicitly for the one-loop self-energy correction (SE) of a bound electron state in the presence of external perturbation potentials. No spurious correctio n terms to the noncovariant PWR scheme are generated for Coulomb-type screening potentia ls and for external magnetic fields. It is shown that in numerical calculations of the SE with Coulombic perturbation potential spurious terms result from an improper treatment of the unphysical high-energy contribution. A method for performing the PWR utilizing the relativistic B-spline approach for the construction of the Dirac spectrum in external magnetic fields is proposed. This method is applied for calculating QED corrections to the bound-electron gg-factor in H-like ions. Within the level of accuracy of about 0.1% no spurious terms are generated in numerical calculations of the SE in magnetic fields.Comment: 22 pages, LaTeX, 1 figur

    Whispering gallery modes in open quantum billiards

    Full text link
    The poles of the S-matrix and the wave functions of open 2D quantum billiards with convex boundary of different shape are calculated by the method of complex scaling. Two leads are attached to the cavities. The conductance of the cavities is calculated at energies with one, two and three open channels in each lead. Bands of overlapping resonance states appear which are localized along the convex boundary of the cavities and contribute coherently to the conductance. These bands correspond to the whispering gallery modes appearing in the classical calculations.Comment: 9 pages, 3 figures in jpg and gif forma
    • …
    corecore