4,012 research outputs found

    The evolution with temperature of magnetic polaron state in an antiferromagnetic chain with impurities

    Full text link
    The thermal behavior of a one-dimensional antiferromagnetic chain doped by donor impurities was analyzed. The ground state of such a chain corresponds to the formation of a set of ferromagnetically correlated regions localized near impurities (bound magnetic polarons). At finite temperatures, the magnetic structure of the chain was calculated simultaneously with the wave function of a conduction electron bound by an impurity. The calculations were performed using an approximate variational method and a Monte Carlo simulation. Both these methods give similar results. The analysis of the temperature dependence of correlation functions for neighboring local spins demonstrated that the ferromagnetic correlations inside a magnetic polaron remain significant even above the N\'eel temperature TNT_N implying rather high stability of the magnetic polaron state. In the case when the electron-impurity coupling energy VV is not too high (for VV lower that the electron hopping integral tt), the magnetic polaron could be depinned from impurity retaining its magnetic structure. Such a depinning occurs at temperatures of the order of TNT_N. At even higher temperatures (TtT \sim t) magnetic polarons disappear and the chain becomes completely disordered.Comment: 17 pages, 5 figures, RevTe

    Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid

    Full text link
    When a phase-separated binary (A+BA+B) mixture is exposed to a wall, that preferentially attracts one of the components, interfaces between A-rich and B-rich domains in general meet the wall making a contact angle θ\theta. Young's equation describes this angle in terms of a balance between the ABA-B interfacial tension γAB\gamma_{AB} and the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} between, respectively, the AA- and BB-rich phases and the wall, γABcosθ=γwAγwB\gamma _{AB} \cos \theta =\gamma_{wA}-\gamma_{wB}. By Monte Carlo simulations of bridges, formed by one of the components in a binary Lennard-Jones liquid, connecting the two walls of a nanoscopic slit pore, θ\theta is estimated from the inclination of the interfaces, as a function of the wall-fluid interaction strength. The information on the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} are obtained independently from a new thermodynamic integration method, while γAB\gamma_{AB} is found from the finite-size scaling analysis of the concentration distribution function. We show that Young's equation describes the contact angles of the actual nanoscale interfaces for this model rather accurately and location of the (first order) wetting transition is estimated.Comment: 6 pages, 6 figure

    Percolation in the Harmonic Crystal and Voter Model in three dimensions

    Full text link
    We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential, U=J2(ϕ(x)ϕ(y))2U=\frac{J}{2} \sum_{} (\phi(x) - \phi(y))^2, x,yZ3x,y \in \mathbb{Z}^3, J>0J > 0 and ϕ(x)R\phi(x) \in \mathbb{R}, a scalar height variable, and define occupation variables ρh(x)=1,(0)\rho_h(x) =1,(0) for ϕ(x)>h(<h)\phi(x) > h (<h). The probability pp of a site being occupied, is then a function of hh. In the voter model we consider the stationary measure, in which each site is either occupied or empty, with probability pp. In both cases the truncated pair correlation of the occupation variables, G(xy)G(x-y), decays asymptotically like xy1|x-y|^{-1}. Using some novel Monte Carlo simulation methods and finite size scaling we find accurate values of pcp_c as well as the critical exponents for these systems. The latter are different from that of independent percolation in d=3d=3, as expected from the work of Weinrib and Halperin [WH] for the percolation transition of systems with G(r)raG(r) \sim r^{-a} [A. Weinrib and B. Halperin, Phys. Rev. B 27, 413 (1983)]. In particular the correlation length exponent ν\nu is very close to the predicted value of 2 supporting the conjecture by WH that ν=2a\nu= \frac{2}{a} is exact.Comment: 8 figures. new version significantly different from the old one, includes new results, figures et

    In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography.

    Get PDF
    The most common technology for seizure detection is with electroencephalography (EEG), which has low spatial resolution and minimal depth discrimination. Optical techniques using near-infrared (NIR) light have been used to improve upon EEG technology and previous research has suggested that optical changes, specifically changes in near-infrared optical scattering, may precede EEG seizure onset in in vivo models. Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth resolved cross-sectional images. In this study, OCT was used to detect changes in optical properties of cortical tissue in vivo in mice before and during the induction of generalized seizure activity. We demonstrated that a significant decrease (P &lt; 0.001) in backscattered intensity during seizure progression can be detected before the onset of observable manifestations of generalized (stage-5) seizures. These results indicate the feasibility of minimally-invasive optical detection of seizures with OCT

    Collective oscillations driven by correlation in the nonlinear optical regime

    Full text link
    We present an analytical and numerical study of the coherent exciton polarization including exciton-exciton correlation. The time evolution after excitation with ultrashort optical pulses can be divided into a slowly varying polarization component and novel ultrafast collective modes. The frequency and damping of the collective modes are determined by the high-frequency properties of the retarded two-exciton correlation function, which includes Coulomb effects beyond the mean-field approximation. The overall time evolution depends on the low-frequency spectral behavior. The collective mode, well separated from the slower coherent density evolution, manifests itself in the coherent emission of a resonantly excited excitonic system, as demonstrated numerically.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    The Cavity Approach to Parallel Dynamics of Ising Spins on a Graph

    Full text link
    We use the cavity method to study parallel dynamics of disordered Ising models on a graph. In particular, we derive a set of recursive equations in single site probabilities of paths propagating along the edges of the graph. These equations are analogous to the cavity equations for equilibrium models and are exact on a tree. On graphs with exclusively directed edges we find an exact expression for the stationary distribution of the spins. We present the phase diagrams for an Ising model on an asymmetric Bethe lattice and for a neural network with Hebbian interactions on an asymmetric scale-free graph. For graphs with a nonzero fraction of symmetric edges the equations can be solved for a finite number of time steps. Theoretical predictions are confirmed by simulation results. Using a heuristic method, the cavity equations are extended to a set of equations that determine the marginals of the stationary distribution of Ising models on graphs with a nonzero fraction of symmetric edges. The results of this method are discussed and compared with simulations
    corecore