20,162 research outputs found

    Ignition Transients of Large Segmented Solid Rocket Boosters

    Get PDF
    A model is described which provides a means for analyzing the complexities of ignition transients and pressure peaks of large, high performance, segmented solid rocket boosters. The method accounts for: (1) temporal and spatial development of the flow field set up by the head end igniter discharge, (2) ignition and flame spreading coupled to chamber flow, (3) the steep velocity, pressure, and temperature gradients that occur during the early phases of ignition, and (4) the interactions that produce ignition spikes (i.e., compression of chamber gases during pressurization, erosive burning, and mass added effect of igniter discharge). The technique differs from earlier models in that the flow interactions between the slots and main chamber are accounted for, and the original computer program for monolithic motors is improved. The procedures were used to predict the ignition transients of the current design for the space shuttle booster

    On convective instability of a rotatiing fluid with a horizontal temperature contrast

    Get PDF
    A simple expression of the criterion for the onset of symmetrical therm.al convection of a rotating fluid subject to a horizontal temperature contrast is obtained. It is shown that both the rotation and a positive static stability act to inhibit convection...

    Fano interference effect on the transition spectrum of single electron transistors

    Full text link
    We theoretically study the intraband transition spectrum of single electron transistors (SETs) composed of individual self-assembled quantum dots. The polarization of SETs is obtained by using the nonequilibrium Green's function technique and the Anderson model with three energy levels. Owing to nonradiative coupling between two excited states through the continuum of electrodes, the Fano interference effect significantly influences the peak position and intensity of infrared wavelength single-photon spectrum.Comment: 4 pages, 5 figure

    The starting transient of solid propellant rocket motors with high internal gas velocities

    Get PDF
    A comprehensive analytical model which considers time and space development of the flow field in solid propellant rocket motors with high volumetric loading density is described. The gas dynamics in the motor chamber is governed by a set of hyperbolic partial differential equations, that are coupled with the ignition and flame spreading events, and with the axial variation of mass addition. The flame spreading rate is calculated by successive heating-to-ignition along the propellant surface. Experimental diagnostic studies have been performed with a rectangular window motor (50 cm grain length, 5 cm burning perimeter and 1 cm hydraulic port diameter), using a controllable head-end gaseous igniter. Tests were conducted with AP composite propellant at port-to-throat area ratios of 2.0, 1.5, 1.2, and 1.06, and head-end pressures from 35 to 70 atm. Calculated pressure transients and flame spreading rates are in very good agreement with those measured in the experimental system

    Tunnelling current and emission spectrum of a single electron transistor under optical pumping

    Full text link
    Theoretical studies of the tunnelling current and emission spectrum of a single electron transistor (SET) under optical pumping are presented. The calculation is performed via Keldysh Green's function method within the Anderson model with two energy levels. It is found that holes in the quantum dot (QD) created by optical pumping lead to new channels for the electron tunnelling from emitter to collector. As a consequence, an electron can tunnel through the QD via additional channels, characterized by the exciton, trion and biexciton states. It is found that the tunnelling current as a function of the gate voltage displays a series of sharp peaks and the spacing between these peaks can be used to determine the exciton binding energy as well as the electron-electron Coulomb repulsion energy. In addition, we show that the single-photon emission associated with the electron-hole recombination in the exciton complexes formed in the QD can be controlled both electrically and optically.Comment: 24 pages, 10 figure

    Bifurcation in electrostatic resistive drift wave turbulence

    Full text link
    The Hasegawa-Wakatani equations, coupling plasma density and electrostatic potential through an approximation to the physics of parallel electron motions, are a simple model that describes resistive drift wave turbulence. We present numerical analyses of bifurcation phenomena in the model that provide new insights into the interactions between turbulence and zonal flows in the tokamak plasma edge region. The simulation results show a regime where, after an initial transient, drift wave turbulence is suppressed through zonal flow generation. As a parameter controlling the strength of the turbulence is tuned, this zonal flow dominated state is rapidly destroyed and a turbulence-dominated state re-emerges. The transition is explained in terms of the Kelvin-Helmholtz stability of zonal flows. This is the first observation of an upshift of turbulence onset in the resistive drift wave system, which is analogous to the well-known Dimits shift in turbulence driven by ion temperature gradients.Comment: 21 pages, 11 figure

    Gravitons and Lightcone Fluctuations II: Correlation Functions

    Get PDF
    A model of a fluctuating lightcone due to a bath of gravitons is further investigated. The flight times of photons between a source and a detector may be either longer or shorter than the light propagation time in the background classical spacetime, and will form a Gaussian distribution centered around the classical flight time. However, a pair of photons emitted in rapid succession will tend to have correlated flight times. We derive and discuss a correlation function which describes this effect. This enables us to understand more fully the operational significance of a fluctuating lightcone. Our results may be combined with observational data on pulsar timing to place some constraints on the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps

    Interacting Fock space characterization of probability measures

    Get PDF
    In this paper we characterize the probability measures, on Rd, with square summable support, in terms of their associated preservation operators and the commutators of the annihilation and creation operators

    Moments and commutators of probability measures

    Get PDF
    Let a(0), a(-) and a(+) be the preservation, annihilation, and creation operators of a probability measure mu on R-d, respectively. The operators a(0) and [a(-), a(+)] are proven to uniquely determine the moments of mu. We discuss the question: "What conditions must two families of operators satisfy, in order to ensure the existence of a probability measure, having finite moments of any order, so that, its associated preservation operators and commutators between the annihilation and creation operators are the given families of operators?" For the case d = 1, a satisfactory answer to this question is obtained as a simple condition in terms of the Szego-Jacobi parameters. For the multidimensional case, we give some necessary conditions for the answer to this question. We also give a table with the associated preservation and commutator between the annihilation and creation operators, for some of the classic probability measures on R

    Semiclassical Gravity Theory and Quantum Fluctuations

    Get PDF
    We discuss the limits of validity of the semiclassical theory of gravity in which a classical metric is coupled to the expectation value of the stress tensor. It is argued that this theory is a good approximation only when the fluctuations in the stress tensor are small. We calculate a dimensionless measure of these fluctuations for a scalar field on a flat background in particular cases, including squeezed states and the Casimir vacuum state. It is found that the fluctuations are small for states which are close to a coherent state, which describes classical behavior, but tend to be large otherwise. We find in all cases studied that the energy density fluctuations are large whenever the local energy density is negative. This is taken to mean that the gravitational field of a system with negative energy density, such as the Casimir vacuum, is not described by a fixed classical metric but is undergoing large metric fluctuations. We propose an operational scheme by which one can describe a fluctuating gravitational field in terms of the statistical behavior of test particles. For this purpose we obtain an equation of the form of the Langevin equation used to describe Brownian motion.Comment: In REVTEX. 20pp + 4 figures(not included, available upon request) TUTP-93-
    • …
    corecore