562 research outputs found

    A single base mutation in an I-A alpha-chain gene alters T-cell recognition.

    Full text link

    XBP-1 specifically promotes IgM synthesis and secretion, but is dispensable for degradation of glycoproteins in primary B cells

    Get PDF
    Differentiation of B cells into plasma cells requires X-box binding protein–1 (XBP-1). In the absence of XBP-1, B cells develop normally, but very little immunoglobulin is secreted. XBP-1 controls the expression of a large set of genes whose products participate in expansion of the endoplasmic reticulum (ER) and in protein trafficking. We define a new role for XBP-1 in exerting selective translational control over high and sustained levels of immunoglobulin M (IgM) synthesis. XBP-1−/− and XBP-1+/+ primary B cells synthesize IgM at comparable levels at the onset of stimulation with lipopolysaccharide or CpG. However, later there is a profound depression in synthesis of IgM in XBP-1−/− B cells, notwithstanding similar levels of μmRNA. In marked contrast, lack of XBP-1 does not affect synthesis and trafficking of other glycoproteins, or of immunoglobulin light chains. Contrary to expectation, degradation of proteins from the ER, using TCRα or US11-mediated degradation of class I major histocompatibility complex molecules as substrates, is normal in XBP-1−/− B cells. Furthermore, degradation of membrane μ was unaffected by enforced expression of XBP-1. We conclude that in primary B cells, the XBP-1 pathway promotes synthesis and secretion of IgM, but does not seem to be involved in the degradation of ER proteins, including that of μ chains themselves

    A Novel Transcription Factor, T-bet, Directs Th1 Lineage Commitment

    Get PDF
    AbstractNaive T helper cells differentiate into two subsets, Th1 and Th2, each with distinct functions and cytokine profiles. Here, we report the isolation of T-bet, a Th1-specific T box transcription factor that controls the expression of the hallmark Th1 cytokine, IFNγ. T-bet expression correlates with IFNγ expression in Th1 and NK cells. Ectopic expression of T-bet both transactivates the IFNγ gene and induces endogenous IFNγ production. Remarkably, retroviral gene transduction of T-bet into polarized Th2 and Tc2 primary T cells redirects them into Th1 and Tc1 cells, respectively, as evidenced by the simultaneous induction of IFNγ and repression of IL-4 and IL-5. Thus, T-bet initiates Th1 lineage development from naive Thp cells both by activating Th1 genetic programs and by repressing the opposing Th2 programs

    A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding

    Get PDF
    The murine autosomal dominant cataract mutants created in mutagenesis experiments have proven to be a powerful resource for modelling the biological processes involved in cataractogenesis. We report a mutant which in the heterozygous state exhibits mild pulverulent cataract named ‘opaque flecks in lens', symbol Ofl. By molecular mapping, followed by a candidate gene approach, the mutant was shown to be allelic with a knockout of the bZIP transcription factor, Maf. Homozygotes for Ofl and for Maf null mutations are similar but a new effect, renal tubular nephritis, was found in Ofl homozygotes surviving beyond 4 weeks, which may contribute to early lethality. Sequencing identified the mutation as a G→A change, leading to the amino-acid substitution mutation R291Q in the basic region of the DNA-binding domain. Since mice heterozygous for knockouts of Maf show no cataracts, this suggests that the Ofl R291Q mutant protein has a dominant effect. We have demonstrated that this mutation results in a selective alteration in DNA binding affinities to target oligonucleotides containing variations in the core CRE and TRE elements. This implies that arginine 291 is important for core element binding and suggests that the mutant protein may exert a differential downstream effect amongst its binding targets. The cataracts seen in Ofl heterozygotes and human MAF mutations are similar to one another, implying that Ofl may be a model of human pulverulent cortical cataract. Furthermore, when bred onto a different genetic background Ofl heterozygotes also show anterior segment abnormalities. The Ofl mutant therefore provides a valuable model system for the study of Maf, and its interacting factors, in normal and abnormal lens and anterior segment developmen

    An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease

    Get PDF
    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD

    A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding

    Get PDF
    The murine autosomal dominant cataract mutants created in mutagenesis experiments have proven to be a powerful resource for modelling the biological processes involved in cataractogenesis. We report a mutant which in the heterozygous state exhibits mild pulverulent cataract named 'opaque flecks in lens', symbol Ofl. By molecular mapping, followed by a candidate gene approach, the mutant was shown to be allelic with a knockout of the bZIP transcription factor, Maf. Homozygotes for Ofl and for Maf null mutations are similar but a new effect, renal tubular nephritis, was found in Ofl homozygotes surviving beyond 4 weeks, which may contribute to early lethality. Sequencing identified the mutation as a G-->A change, leading to the amino-acid substitution mutation R291Q in the basic region of the DNA-binding domain. Since mice heterozygous for knockouts of Maf show no cataracts, this suggests that the Ofl R291Q mutant protein has a dominant effect. We have demonstrated that this mutation results in a selective alteration in DNA binding affinities to target oligonucleotides containing variations in the core CRE and TRE elements. This implies that arginine 291 is important for core element binding and suggests that the mutant protein may exert a differential downstream effect amongst its binding targets. The cataracts seen in Ofl heterozygotes and human MAF mutations are similar to one another, implying that Ofl may be a model of human pulverulent cortical cataract. Furthermore, when bred onto a different genetic background Ofl heterozygotes also show anterior segment abnormalities. The Ofl mutant therefore provides a valuable model system for the study of Maf, and its interacting factors, in normal and abnormal lens and anterior segment development
    corecore