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Abstract

There is a clinical need for new, more effective treatments for chronic and debilitating 

inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Targeting 

drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize 

systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) 

that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated 

from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. 

Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory 

corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and 

demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis 

models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every 

other day to mice with colitis resulted in a significant reduction in inflammation and were 

associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex 

vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-

hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with 

histologically normal sites. The IT-hydrogel drug delivery platform represents a promising 

approach for targeted enema-based therapies in patients with colonic IBD.

INTRODUCTION

Inflammatory bowel disease (IBD) in its two main variants, Crohn’s disease and ulcerative 

colitis (UC), affects about 1.4 million Americans, and its incidence is increasing around the 

world (1, 2). Currently available therapies fail to control symptoms adequately in a 

significant number of patients, adversely affecting quality of life (3, 4).

One approach to develop more efficacious and safer therapies could be inflammation-

targeting drug delivery to achieve high drug concentrations locally at the site of 

inflammation with minimal exposure of healthy or distant tissues. Enemas as a basic form of 

targeted drug delivery to the inflamed colon are routinely used in mild-to-moderate colitis 

(5). However, typical enema-based formulations require the patient to retain the enema for 

extended periods of time, which is difficult when suffering from diarrhea and fecal urgency. 

The need for frequent dosing negatively affects patient compliance (6). Furthermore, high 

concentrations of active drug may result in significant absorption and systemic side effects.

Inflammation targeting can potentially be achieved using drug delivery systems that exploit 

specific features of the diseased tissue. Inflammation of the colonic mucosa is accompanied 

by depletion of the mucus layer and in situ accumulation of positively charged proteins 

including transferrin (7), bactericidal/permeability-increasing protein, and antimicrobial 

peptides (8–11). This results in the buildup of positive charges at the damaged epithelial 

surface, providing a molecular target and anchor for drug carriers with negative surface 

charge (12, 13). Inflammation is furthermore accompanied by up-regulation and release of 

degradative enzymes including esterases and matrix metalloproteinases (MMPs) (14, 15). A 

drug delivery system with an overall negative surface charge and containing an enzyme-
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labile linker should therefore preferentially adhere to inflamed mucosa and release drug in 

response to enzyme activities present at the site of inflammation. Additionally, binding of 

the drug carrier system to the mucosa should prolong local drug availability and permit a 

reduction in dosing frequency.

To identify suitable inflammation-responsive compositions, we examined hundreds of 

compounds from the Generally Recognized as Safe (GRAS) list of the U.S. Food and Drug 

Administration. Inflammation-responsive materials that have been described (16, 17) require 

an organic synthesis step for the introduction of MMP-labile linkers, which is complex and 

costly. We reasoned that the use of GRAS reagents, which are generally safe for oral 

consumption, inexpensive, and readily available in large quantities, should accelerate 

translation to the clinic. On the basis of our search for agents with enzyme-labile bonds that 

could be cleaved in inflammatory environments, we selected ascorbyl palmitate (AP), an 

amphiphile capable of self-assembly into a hydrogel in vitro (18).

We report here that a hydrogel made from AP can be used as an inflammation-targeting 

hydrogel (IT-hydrogel) for drug delivery in IBD (Fig. 1, A and B). IT-hydrogel microfibers 

encapsulate hydrophobic drugs and, owing to their negative surface charge, preferentially 

adhere to the inflamed mucosa in two murine colitis models, T-bet−/−Rag2−/−ulcerative 

colitis (TRUC) (19) and dextran sulfate sodium (DSS)–induced colitis, as well as to tissue 

samples from patients with UC. Using the corticosteroid dexamethasone (Dex) as a model 

drug, we demonstrate that drug-loaded IT-hydrogel microfibers administered to colitic mice 

via enema are therapeutically more efficacious and result in less systemic drug exposure 

than free Dex. Our study provides proof of concept for IT-hydrogel as a safe and potentially 

effective drug delivery platform for colonic IBD and other inflammatory diseases.

RESULTS

Dex is efficiently encapsulated and released from IT-hydrogel in vitro

AP consists of a partially charged hydrophilic head (ascorbic acid) and a hydrophobic tail 

(palmitic acid) joined by an ester bond (Fig. 1C). In a dimethyl sulfoxide (DMSO)/water 

solvent mixture, AP assembles into extended micellar structures and interdigitated bilayers 

with a hydrophobic core and hydrophilic outer layer that form fibers at the microscopic 

level. After heating to facilitate the dissolution of AP, gelation occurs when the AP/solvent 

mixture cools to room temperature (Fig. 1D).

Here, we loaded the IT-hydrogel by adding the Dex pro-drug Dex-21 palmitate (Dex-Pal) 

and, for imaging purposes, the fluorescent dye DiD (1,1′-dioctadecyl-3,3,3′,3′-

tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) before gelation. These 

hydrophobic compounds are expected to interact with the palmitic acid tails of AP and 

integrate into the core of the hydrogel fibers. Scanning electron microscopy revealed the 

fibrous structure of the IT-hydrogel with a fiber diameter of 1 to 2 μm and a length of 20 to 

50 μm (Fig. 1E), which was similar for unloaded and Dex-loaded hydrogels. All IT-hydrogel 

formulations had a similar negative surface charge (Fig. 1F). For in vitro and in vivo 

applications, the IT-hydrogel was easily suspended in PBS, yielding a mixture of 
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microscopic fiber particles of various sizes (Fig. 1G) that could easily be handled with 

pipettes and syringes.

To analyze variables affecting drug encapsulation and release, Dex-loaded IT-hydrogels 

were generated using two concentrations of gelator [4 and 8% (w/v) AP] and two 

concentrations of Dex-Pal (Dex equivalent, 5 and 10 mg/ml) on the basis of our previous 

experience with the gels and drug-loading and delivery requirements, respectively. A lower 

gelator concentration (4%) and a higher Dex-Pal concentration (10 mg/ml) resulted in the 

best drug-loading efficiency among the formulations tested (14%, Fig. 2A). In contrast, the 

encapsulation efficiency was not substantially affected by the gelator and Dex-Pal 

concentrations (Fig. 2B).

Dex-loaded IT-hydrogel incubated in PBS at 37°C was stable for 16 days, without any 

measurable Dex release (Fig. 2C). Addition of an esterase, Thermomyces lanuginosus 
lipase, induced a rapid and dose-dependent release of Dex (Fig. 2C and fig. S1A). The 

simultaneous generation of free ascorbic acid and Dex (fig. S1, B and C) suggests that 

esterase hydrolyzed the ester bond in AP, causing gel disassembly while simultaneously 

converting Dex-Pal to active Dex by cleaving the ester bond in the palmitated pro-drug. The 

Dex-Pal pro-drug could not be detected in the mobile phase at any time point. Dex was more 

efficiently released from a 4% IT-hydrogel than from an 8% IT-hydrogel (fig. S1D).

Macrophages and other immune cells secrete enzymes at the site of inflammation that would 

be expected to hydrolyze the IT-hydrogel (14, 15). To simulate drug release from the IT-

hydrogel under inflammatory conditions, Dex-loaded 4% IT-hydrogel microfibers were 

incubated in vitro with supernatant from human or mouse macrophages cultured with or 

without lipopolysaccharide (LPS). Enzymes secreted by both mouse and human 

macrophages were capable of inducing drug release from Dex-loaded IT-hydrogel (Fig. 2D). 

Macrophage activation by LPS enhanced the accumulation of enzymatic activity in the 

supernatant compared with unstimulated cells.

For subsequent in vitro and in vivo studies, we chose to use a 4% IT-hydrogel, which was 

less viscous than the 8% gel (fig. S1E) and thus easier to pass through syringes and small-

bore tubes. We found no evidence for cytotoxicity of IT-hydrogel preparations (3 to 8% AP, 

± Dex) in two human intestinal epithelial cell lines, Caco2 and HT-29, after 72 hours in vitro 

(fig. S2).

IT-hydrogel preferentially adheres to inflamed mucosa in mice with colitis

The negative surface charge of the IT-hydrogel (Fig. 1F) should facilitate its adhesion to the 

positively charged inflamed colon epithelium (7–11). To test this hypothesis, we first 

analyzed the adhesive properties of IT-hydrogel microfibers in vitro using synthetic surfaces. 

IT-hydrogel loaded with both DiD and Dex [(DiD + Dex)/gel] was incubated on polystyrene 

plates coated with human recombinant transferrin (positively charged) or porcine mucin 

protein (negatively charged), simulating inflamed and healthy epithelium, respectively (Fig. 

3A). Transferrincoated plates retained a 7.6-fold higher fluorescence signal from the (DiD + 

Dex)/gel after washing compared to mucin-coated or uncoated plates (Fig. 3A). We 

confirmed charge interactions as the main mechanism of IT-hydrogel adhesion using 

Zhang et al. Page 4

Sci Transl Med. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chemically defined (amine- or carboxyl-modified) substrates (fig. S3A). In another control 

experiment, we incubated (DiD + Dex)/gel with a cationic polyallylamine solution to 

convert the surface charge of the microfibers from negative to positive. As predicted, this 

abrogated the preferential adhesion of IT-hydrogel to transferrin and enhanced adhesion to 

the uncoated and mucin-coated surfaces (fig. S3B).

We then examined the adhesion of IT-hydrogel to inflamed colon epithelium using two 

established mouse IBD models: chemically induced DSS colitis and the spontaneous TRUC 

model. The distal colon was removed from mice with colitis and healthy controls, incubated 

with (DiD + Dex)/gel ex vivo, washed, and imaged using an IVIS fluorescence imaging 

system. Colons from wild-type mice with DSS colitis and from colitic TRUC mice showed 

significantly greater retention of fluorescence than colons from wild-type mice without 

colitis and Rag2−/− control mice, respectively (Fig. 3B). (DiD + Dex)/gel adhered to the 

apical surface of the inflamed colon, as shown by confocal microscopy of frozen colon 

sections from a DSS mouse (fig. S4).

Preferential adhesion of IT-hydrogel to inflamed mucosa was further validated in vivo. Wild-

type mice with DSS colitis and untreated controls, or TRUC and Rag2−/− control mice 

received a single enema of (DiD + Dex)/gel. Animals were sacrificed 12 hours later, the 

distal colon was removed, and fluorescence retention was quantified. Colons from colitic 

mice demonstrated more gel adherence compared to the respective controls in both models 

(Fig. 3C). Administration of free DiD via enema to mice with DSS colitis did not result in 

retention of the fluorescence signal when the colon was analyzed 12 hours later (fig. S5). 

Together, these experiments provide evidence that IT-hydrogel microfibers preferentially 

adhere to the inflamed colon mucosa mediated by electrostatic interaction.

Drug delivery via IT-hydrogel enema improves therapeutic efficacy

We then tested IT-hydrogel in a therapeutic setting in TRUC mice. We did not examine the 

therapeutic efficacy of Dex-loaded IT-hydrogel in the DSS model because conflicting data 

about the efficacy of cortico-steroid administration on the severity of DSS colitis have been 

reported (20, 21). Dex was used at 70 μg per dose on the basis of published reports of 

treatment studies in rodent colitis models (22, 23). Colitic TRUC mice received an enema of 

Dex-Pal–loaded IT-hydrogel (Dex/gel) or water-soluble Dex-21 phosphate in PBS (free Dex) 

on experimental days 1 and 3. Untreated mice (Control) and mice that received gel without 

drug (Gel) served as controls. All mice were sacrificed on day 5 for blinded 

histopathological analysis of the colon by a board-certified gastrointestinal pathologist (Fig. 

4A). Disease severity was significantly reduced in mice given Dex/gel (mean colitis score, 

1.4) compared to all other experimental groups, whereas mice in the free Dex group (mean 

colitis score, 3.3) did not differ significantly from untreated mice (mean colitis score, 3.4) or 

mice that had received gel only (mean colitis score, 4.1) (Fig. 4B). TRUC disease is 

characterized by infiltration of the colon lamina propria with neutrophils and mononuclear 

inflammatory cells, crypt hypertrophy, and superficial erosions (19, 24). Representative 

images (Fig. 4C) demonstrate that histological inflammation was diminished in the mice 

treated with two Dex/gel enemas, but not in mice receiving two enemas with the equivalent 

amount of free Dex. Colon weight, myeloperoxidase (MPO) activity, and expression of 
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tumor necrosis factor (TNF) in the distal colon were evaluated as additional parameters of 

disease activity in a second independent experiment (Fig. 4D). We observed a reduction of 

all three parameters in mice treated with Dex/gel enemas compared with the other 

experimental groups; the reductions of colon weight and MPO activity were statistically 

significant.

Although two enemas with free Dex (70 μg of Dex equivalent per dose) had no measurable 

effect (Fig. 4, B to D), we did observe a significant reduction in colitis severity when free 

Dex was administered intraperitoneally for four consecutive days (Fig. 4, E and F), 

demonstrating biological activity of the compound in our model. Thus, delivering Dex to 

colitic mice encapsulated in IT-hydrogel was significantly more efficacious than giving the 

equivalent amount of free Dex via enema.

We also performed an in vivo barrier function assay as part of the experiment reported in 

Fig. 4D. Treatment with two enemas of Dex/gel had no statistically significant beneficial 

effect on intestinal epithelial permeability compared with free Dex and control groups (fig. 

S6), which likely reflects both incomplete resolution of inflammation on the time scale of 

the experiment and the experimental noise of the assay. Longer-term and ex vivo studies 

may be needed to address this question in the future.

To demonstrate that the therapeutic benefit of Dex/gel enemas was not simply an effect of 

administering the pro-drug Dex-Pal, colitic TRUC mice were given two enemas of Dex-Pal 

suspended in a 5% ethanol/5% Tween 80 mixture on days 1 and 3, and colon histopathology 

was analyzed on day 5 (Fig. 4A). Administration of Dex-Pal without IT-hydrogel had no 

significant impact on disease severity compared with vehicle controls (Fig. 4G). These 

results are consistent with a model where negatively charged IT-hydrogel microfibers adhere 

to the inflamed colon mucosa, thereby providing a reservoir for prolonged local drug 

availability and improved therapeutic efficacy.

Local drug delivery via IT-hydrogel reduces systemic drug exposure

Drug release from IT-hydrogel requires enzymatic digestion of the gel by hydrolytic 

enzymes such as esterases (Fig. 2C) or MMPs (18). We analyzed enzyme-responsive Dex 

release in vivo by monitoring the serum drug level after administration of Dex/gel to the 

inflamed colon. Mice with colitis received a single enema of either Dex/gel or free Dex (70 

mg of Dex equivalent in both preparations), and serum Dex levels were determined after 1, 

2, 4, 6, 12, and 24 hours (Fig. 5A). Mice with DSS-induced colitis receiving free Dex had an 

early peak of the serum Dex concentration at 1 hour (Fig. 5B); levels declined rapidly 

thereafter with first-order kinetics. In mice receiving Dex/gel enemas, the peak serum 

concentration was significantly lower. The AUC as a measurement of cumulative systemic 

drug absorption was also significantly reduced in the Dex/gel mice compared with mice 

receiving free Dex (Fig. 5B). Similar pharmacokinetics was seen in TRUC mice (Fig. 5B). 

Thus, delivering Dex via IT-hydrogel altered the pharmacokinetics in both DSS colitis and 

TRUC models, resulting in a major reduction in systemic drug absorption.
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IT-hydrogel preferentially adheres to biopsy specimens from human inflamed colon

To test the adhesion of IT-hydrogel to human colonic mucosa, we analyzed biopsy 

specimens from UC patients undergoing surveillance colonoscopy (n = 6; table S1) 

comparing inflamed mucosa with normal mucosa in the same patient. Freshly obtained 

biopsy specimens were incubated ex vivo with (DiD + Dex)/gel and imaged using an IVIS 

fluorescence imaging system (Fig. 6A). Specimens from inflamed sites retained significantly 

more fluorescence than did those from normal sites (Fig. 6, B and C); the mean fold 

difference between inflamed and normal biopsy specimens was 5.4. The ex vivo analysis of 

human biopsy samples therefore demonstrates, consistent with our mouse data, that IT-

hydrogel microfibers preferentially adhere to inflamed mucosa in patients with active UC.

DISCUSSION

Drug therapy involves the careful balancing of intended therapeutic effects and unwanted 

side effects often related to activities in organs not affected by the disease. One approach to 

maximize beneficial effects and reduce the potential for side effects is targeted drug delivery 

and release. Many oral formulations for drug delivery to the colon rely on pH-, time-, 

microflora-, or pressure-triggered mechanisms and target the intestinal region rather than the 

inflamed intestine (25). In contrast, inflammation-targeting drug delivery systems use 

specific features of the inflamed target organ. Poly(lactic-co-glycolic acid) nanoparticles 

have been shown to accumulate in the inflamed mucosa after oral administration to rats with 

trinitrobenzenesulfonic acid–induced colitis owing to increased tissue permeability at the 

site of inflammation (26), and poly(thioketal) nanoparticles release drug upon degradation 

by reactive oxygen species present in the colon of mice with DSS-induced colitis (27). The 

inflamed intestine has also been targeted from the bloodstream using PEGylated poly(lactic 

acid) microparticles coated with antibodies against an endothelial cell adhesion molecule up-

regulated in mouse colitis models (28, 29).

Here, we demonstrate that IT-hydrogel fibers with a negatively charged surface 

preferentially adhere to positively charged artificial surfaces, to inflamed mucosa in murine 

colitis, and to biopsy specimens from inflamed colon mucosa in human UC patients. 

Although we cannot exclude the possibility that additional factors may play a role in vivo, 

our in vitro data strongly suggest charge as the main factor mediating adhesion of IT-

hydrogel to the inflamed epithelial surface. This is consistent with published reports 

describing the use of anionic liposomes for drug delivery to the inflamed intestine (12, 13). 

We were able to detect a fluorescence signal from the intestinal wall for at least 12 hours 

after administration of a single enema of fluorescently labeled IT-hydrogel to mice with 

colitis. This suggests that adherent IT-hydrogel microfibers generate a reservoir of 

encapsulated drug at the site of inflammation, thereby prolonging local drug availability. 

Drug delivery using IT-hydrogel enemas may thus allow for less frequent dosing in patients 

with IBD.

Compared with other drug delivery systems targeting the inflamed colon mucosa, IT-

hydrogel has several potential advantages. First, the IT-hydrogel described here is made 

from a nontoxic, GRAS compound (30), which should facilitate rapid translation into the 

clinic. Many GRAS agents are relatively inexpensive and available in large quantities at a 
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high grade of purity (Good Manufacturing Practice or Food Grade). Second, the gelation 

process for the IT-hydrogel is simple and easy to scale up. Third, IT-hydrogel has a high 

drug-loading capacity, owing to the small molecular weight of the gelator and the 

availability of all gelator molecules to form intermolecular interactions. Fourth, drug-loaded 

IT-hydrogel exhibits long-term stability, which enables sustained drug release over several 

days. Presumably, the microstructure of the gel fibers protects the ester bond between 

ascorbic acid and palmitic acid from spontaneous hydrolysis by water, because water cannot 

efficiently penetrate into the hydrophobic fiber core to disassemble the gel and release the 

drug. Drug release requires hydrolytic enzyme activities, which are up-regulated at sites of 

inflammation, further strengthening the inflammation-responsive aspect of this system.

IT-hydrogel microfibers made from AP are representative of a first generation of 

inflammation-targeting drug delivery systems prepared from amphiphile GRAS reagents. 

Potential applications are not limited to IBD but include any disease where controlled drug 

release at a distinct location is desired. We recently reported that delivery of an 

immunosuppressive drug (tacrolimus) using an enzyme-responsive hydrogel prepared from 

another GRAS reagent (triglycerol monostearate) improved long-term survival of 

vascularized allografts in rats (31). In that study, the drug-loaded hydrogel was injected 

subcutaneously into the allograft. Here, we used topical enzyme-responsive drug release in 

combination with inflammation-sensitive charge-based adhesion to improve drug delivery to 

the inflamed colon.

To analyze gel adhesion and drug delivery via IT-hydrogel in vivo, we used two mouse IBD 

models, TRUC and DSS-induced colitis models. In both models, we found preferential 

adhesion of IT-hydrogel to the inflamed mucosa and reduced systemic drug absorption after 

enema administration of Dex-loaded IT-hydrogel compared with free Dex. We could 

demonstrate that IT-hydrogel also adhered significantly better to biopsy specimens from 

inflamed mucosal locations in patients with UC compared with specimens from normal 

sites. All patients were on anti-inflammatory medications at the time of biopsy; our results 

may therefore underestimate the binding efficacy of the IT-hydrogel to the inflamed mucosa 

in untreated patients.

We loaded IT-hydrogel microfibers with the corticosteroid Dex to examine the utility of this 

system for inflammation-targeting drug delivery in mice in vivo. Delivering Dex 

encapsulated in IT-hydrogel reduced systemic absorption compared with free Dex 

administered via enema and improved its therapeutic efficacy in the TRUC model. We 

analyzed only one drug (Dex) whose anti-inflammatory properties are well described (32, 

33). However, the investigation of novel drug targets was not the focus of our study. Rather, 

we consider Dex as a model drug to demonstrate the utility of the IT-hydrogel in colonic 

IBD. Our approach could potentially be applied to many other drugs, including small-

molecule inhibitors of signaling cascades (31).

We did not achieve complete resolution of colon inflammation by giving TRUC mice two 

Dex/gel enemas (Fig. 4, B to D, and fig. S6). However, we chose a treatment regimen that 

might discern a difference in therapeutic response between Dex/gel and free Dex 

considering that free Dex effectively treats TRUC when administered in high enough 
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quantities (Fig. 4F). Long-term experiments with more stringent end points including assays 

of intestinal barrier function will be important when testing future IT-hydrogel formulations. 

The use of a single mouse model for the analysis of therapeutic efficacy is another potential 

limitation of our study. Additional preclinical studies including large animal models are 

needed before the clinical benefits of IT-hydrogel can be evaluated in humans.

In conclusion, we have developed a strategy for targeted drug delivery to the inflamed 

colonic mucosa using hydrogel microfibers prepared from an amphiphilic GRAS reagent. 

Through attaching to the inflamed mucosa and selectively releasing drug at the site of 

inflammation, this system has the potential to prolong local drug availability, minimize 

systemic drug absorption, reduce dosing frequency, and lower the burden on the patient for 

retaining enemas after administration, all of which should improve compliance, reduce the 

risk for systemic toxicity, and maximize therapeutic efficacy.

MATERIALS AND METHODS

Study design

The goal of this study was to engineer an inflammation-targeting drug delivery system (IT-

hydrogel) for IBD of the colon. We hypothesized that negatively charged IT-hydrogel 

microfibers should rapidly adhere to inflamed colon mucosa and selectively release their 

drug cargo upon enzymatic digestion. After characterization of the IT-hydrogel in vitro, we 

examined whether drug delivery via IT-hydrogel enemas would affect therapeutic efficacy 

and systemic drug absorption in two mouse models of IBD, DSS-induced colitis and the 

spontaneous TRUC model. Throughout this study, the anti-inflammatory drug Dex was used 

as a model drug—either the hydrophobic pro-drug Dex-Pal for loading into IT-hydrogel 

microfibers or the water-soluble Dex-21 phosphate. Animals were randomly assigned to 

different treatment groups. DSS-treated animals without weight loss were excluded from the 

study before randomization. For imaging experiments, 5 to 7 mice were used per group; for 

treatment and pharmacokinetic studies, we used 7 to 10 mice per group on the basis of 

previous studies. All animals were included in the analysis. Histopathology was analyzed by 

an experienced gastrointestinal pathologist (J.N.G.) blinded to group assignment using an 

established scoring system. Adhesion of IT-hydrogel to human colon mucosa was tested 

using biopsy specimens from patients with UC. Patients were from the Brigham and 

Women’s Hospital (BWH) Crohn’s and Colitis Center who had given informed consent to 

collect biopsy specimens for research purposes under a protocol approved by the 

Institutional Review Board of Partners HealthCare.

Mice

TRUC (T-bet−/−Rag2−/−) (19) and Rag2−/− lines on a BALB/c genetic background were 

maintained in a specific pathogen-free animal facility at the Harvard School of Public Health 

(HSPH). The mice were housed in microisolator cages with Sulfatrim [sulfamethoxazole (1 

g/liter) + trimethoprim (0.2 g/liter); Hi-Tech Pharmacal] added to the drinking water. TRUC 

and Rag2−/− mice were used for experiments at 8 to 10 weeks of age. Adult BALB/c wild-

type mice were purchased from the Jackson Laboratory. Experiments involving wild-type 

mice were performed either at HSPH or at the David H. Koch Institute for Integrative 
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Cancer Research at Massachusetts Institute of Technology (MIT). All mouse studies were 

performed according to institutional and National Institutes of Health (NIH) guidelines for 

humane animal use. Experimental protocols were approved by the Animal Care Committees 

at Harvard University and MIT.

Preparation of IT-hydrogel

IT-hydrogel (3 to 8%, w/v) was prepared using DMSO (Sigma-Aldrich) and H2O as a 

solvent pair (volume ratio, DMSO/H2O = 1:4). After dissolving AP (Sigma-Aldrich) in 

DMSO, H2O was added dropwise. The vial was heated to 60° to 80°C until AP was 

completely dissolved and then allowed to cool down to room temperature (18). The formed 

hydrogel was washed with PBS and centrifuged at 6000 rpm for 10 min (3×). For 

preparation of sterile hydrogels, all solutions were sterilized before gelation using 0.20-μm 

syringe filters. Hydrogel morphology was characterized by environmental scanning electron 

microscopy (FEI/Philips XL30 FEG, 1000×, acceleration voltage, 10.0 kV). The washed 

hydrogel pellet was suspended in PBS for polarized optical microscopy imaging (Zeiss 

Axioplan2, 40×).

Dex encapsulation

Dex-Pal (Toronto Research Chemicals Inc.) was mixed with AP in DMSO before adding 

H2O. To quantify the drug-loading efficiency (weight of incorporated drug divided by 

weight of drug-loaded gel) and encapsulation efficiency (weight of incorporated drug 

divided by weight of input drug), the hydrogel pellet was lyophilized and dissolved in 

DMSO for high-performance liquid chromatography (HPLC) analysis.

Cell culture

Primary macrophages were generated by injecting wild-type BALB/c mice with 2.5 ml of 

3% thioglycolate (BD Biosciences) intraperitoneally. Peritoneal cells were harvested on day 

3 by lavage with ice-cold PBS. Cells (1.5 × 106) were plated in 3 ml of RPMI 1640 (Cellgro) 

supplemented with 10% fetal calf serum (Atlanta Biologicals), 10 mM Hepes, 1 mM sodium 

pyruvate, 2 mM L-glutamine, penicillin (100 U/ml), streptomycin (100 μg/ml) (all Cellgro), 

and 50 μM β-mercaptoethanol (Sigma-Aldrich) (RPMI-C). The cells were allowed to adhere 

overnight. They were then stimulated with LPS (Escherichia coli 0111:B4, Sigma-Aldrich) 

at 1 μg/ml. Supernatant was harvested after 24, 48, and 72 hours. THP-1 cells (American 

Type Culture Collection) were cultured in RPMI-C. For differentiation into macrophages, 

1.25 × 106 cells were seeded on six-well plates in 2.5 ml of RPMI-C plus 50 nM phorbol 12-

myristate 13-acetate 3 days before stimulation. Medium was changed to fresh medium 1 day 

before stimulation with LPS (100 ng/ml). Supernatant was harvested after 4 and 24 hours 

and frozen at −80°C until analysis.

Ex vivo and in vivo gel adhesion experiments

Animals with colitis (TRUC or DSS) and disease-free controls (Rag2−/−or untreated wild 

type, respectively) were on an alfalfa-free diet (Harlan Laboratories) for 1 week before 

experiments. For ex vivo adhesion testing, the most distal 1.5 cm of colon tissue excluding 

the anus was dissected. Two hundred microliters of (DiD + Dex)–loaded 4% IT-hydrogel 
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[(DiD + Dex)/gel] was suspended in 6 ml of PBS. The colon was inverted and incubated in 

0.5 ml of gel suspension for 30 min at 37°C with gentle shaking (34). After washing with 

PBS (3×), the colon was opened longitudinally and imaged using an IVIS fluorescence 

imager (IVIS 200, PerkinElmer) with the luminal side facing up.

For in vivo adhesion testing, animals were fasted overnight, and the following morning, each 

mouse received an enema of 100 μl (DiD + Dex)/gel. Individual mice were anesthetized with 

2.5% isoflurane, a 20-gauge flexible disposable feeding needle (Braintree Scientific) was 

advanced into the rectum 3 cm past the anus, (DiD + Dex)/gel was administered, the catheter 

was removed, and the anus was kept closed manually for 1 min. Animals were sacrificed 

after 12 hours. The distal 3 cm of the colon was removed and imaged freshly without 

washing. The fluorescence signal intensity was quantified using Living Image software 

(version 4.3.1, PerkinElmer) in a standard-size ROI drawn around individual colon pieces. 

Background fluorescence intensity determined as the average of three ROIs not containing 

any colon tissue was subtracted from all specimens.

In vivo treatment of established colitis

TRUC mice were randomized to one of four experimental groups: (i) control (no treatment 

or 100 μl of PBS enema), (ii) gel enema (4% IT-hydrogel suspended in 100 μl of PBS), (iii) 

free Dex enema (Dex-21 phosphate in 100 μl of PBS, 70 μg of Dex equivalent), and (iv) 

Dex/gel enema (Dex-Pal in 4% IT-hydrogel suspended in 100μl of PBS, 70 μg of Dex 

equivalent). Enemas were administered on days 1 and 3 after fasting the mice overnight as 

described. Duplicate aliquots of the enema suspension or solution given to the mice in 

groups iii and iv were analyzed by HPLC to confirm the Dex equivalent content in Dex-Pal 

or Dex-21 phosphate.

In one control experiment (Fig. 4F), TRUC mice received four daily consecutive 

intraperitoneal injections of free Dex (70 μg of Dex equivalent) or PBS alone. In a second 

control experiment (Fig. 4G), TRUC mice received enemas on days 1 and 3 of Dex-Pal (70 

μg of Dex equivalent) dissolved in 100 μl of 5% ethanol + 5% Tween 80 (Sigma-Aldrich) or 

carrier alone.

All mice were sacrificed for histopathological analysis on day 5. Colons were isolated, fixed 

in 4% paraformaldehyde, and embedded in paraffin. Standard H&E-stained sections were 

examined and scored by an experienced pathologist (J.N.G.) in a blinded fashion. 

Mononuclear cell infiltration, polymorphonuclear cell infiltration, epithelial hyperplasia, and 

epithelial injury are the four components in the score that were independently graded as 

absent (0), mild (1), moderate (2), or severe (3), giving a total score of 0 to 12 (19, 24).

Ex vivo gel adhesion experiments with colon biopsy specimens from patients with UC

Two biopsies from inflamed and normal mucosa as evaluated endoscopically were taken 

from each patient, placed immediately in PBS, and transported on ice to the laboratory. A 

third biopsy from each site was sent to the clinical pathology laboratory for routine 

histopathology evaluation. The adhesion test was performed within 4 hours of the biopsy as 

follows. Two hundred microliters of (DiD + Dex)-loaded 4% IT-hydrogel was suspended in 

6 ml of PBS. Individual specimens were incubated in 0.5 ml of the gel suspension for 30 
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min at 37°C with gentle shaking. After washing with PBS (3×), the samples were placed on 

a black plastic sheet and imaged using an IVIS fluorescence imager (IVIS 200, 

PerkinElmer). Fluorescence signal intensity was quantified using the Living Image software 

(version 4.3.1, PerkinElmer). The specimens were subsequently air-dried and weighed to 

determine the weight-normalized fluorescence signal intensity. Specimens from 11 patients 

(table S1) were assayed. For inclusion in the analysis (Fig. 6), we required that endoscopy 

and histopathology reports were concordant for either “normal” or “inflamed” mucosa; for 

this reason, four patients were excluded; a fifth patient was excluded because the inflamed 

specimen was derived from the appendiceal orifice (table S1).

Statistical analysis

The two-tailed Student’s t test was used to compare differences between two experimental 

groups, except for the study with UC patients where the paired t test was used. In 

experiments with multiple groups, one-way ANOVA with Tukey post hoc test was used. A 

value of P < 0.05 was considered statistically significant. Statistical analysis and graphing 

were performed with Prism 6 (GraphPad Software).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. IT-hydrogel targets drug release to the inflamed mucosa
(A) A lipophilic drug is loaded into IT-hydrogel during gelation. The drug integrates into the 

hydrophobic core of the lipid bilayer. Microfibers represent higher-order assemblies of 

extended bilayer structures, which are suspended in phosphate-buffered saline (PBS) to yield 

a mixture of microscopic hydrogel fiber particles of various sizes. (B) Negatively charged 

IT-hydrogel microfibers do not adhere to the intact mucosal surface. The inflamed mucosa is 

characterized by mucus depletion, accumulation of positively charged proteins, and 

increased permeability of the epithelial cell layer. Negatively charged IT-hydrogel 

microfibers adhere to the positively charged inflamed epithelium. Hydrolytic enzymes 

released by inflammatory cells degrade the gel, resulting in drug release. PMN, 

polymorphonuclear leukocytes. (C) Molecular structure of AP (top) and the assembled IT-

hydrogel (bottom) demonstrating the alignment of the hydrophobic tails in the center and the 

hydrophilic heads on the outside of the bilayer. (D) AP before and after gelation. (E) 

Environmental scanning electron microscopy imagesofunloaded and Dex-loaded IT-

hydrogel before suspension inPBS. (F) ζ Potential of IT-hydrogel (Gel) or gel loaded with 

Dex (Dex/gel), DiD (DiD/gel),orDex+DiD [(Dex+DiD)/gel]. Data are means±SD(n=6 

pooled from two experiments); P = 0.1485 determined by one-way analysis of variance 

(ANOVA). (G) Polarized optical microscopy image of IT-hydrogel suspended in PBS.
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Fig. 2. Dex is efficiently encapsulated into IT-hydrogel and released by esterase activity and 
supernatant from macrophages
(A and B) Drug-loading and encapsulation efficiencies for 4 and 8% AP gelator with Dex-

Pal at Dex equivalent of 5 and 10 mg/ml. (C) Esterase-responsive Dex release from IT-

hydrogel. Esterase (T. lanuginosus lipase, 100 U/ml) was added on day 6. (D) Dex release 

from IT-hydrogel upon incubation with culture supernatant from activated mouse or human 

macrophages for 24 hours at 37°C. The4%IT-hydrogelin(C)and (D) was loaded with Dex-

Pal (Dex equivalent,5mg/ml). Dataare means±SD (n = 3, performed at least twice); P values 

in (D) were determined by Student’s t test with the Holm-Sidak method to correct for 

multiple comparisons.
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Fig. 3. IT-hydrogel preferentially adheres to inflamed mucosa
(A) (DiD + Dex)–loaded 4% IT-hydrogel [(DiD + Dex)/gel] was incubated with uncoated, 

mucin-coated (simulating healthy epithelium), or transferrin-coated (simulating inflamed 

epithelium) surfaces at 37°C for 1 hour. Fluorescence images obtained after rinsing (left) 

were quantified using ImageJ software (right). Data are means ± SD (n = 9, triplicate 

samples, three images per sample); P values were determined by one-way ANOVA with 

Tukey post hoc test. aU, arbitrary unit. (B) The distal colon of wild-type (WT) mice with 

DSS-induced colitis and healthy controls was incubated ex vivo with (DiD+Dex)/gel at 37°C 

for 30 min and washed, and fluorescence wasquantified using an IVIS imaging system (left). 

The same experimental setup compared colitic TRUC mice and age-matched Rag2−/− mice 

without colitis (right). (C) WT mice with DSS-induced colitis and healthy controls received 

an enema of (DiD + Dex)/gel. The animals were sacrificed 12 hours later, and fluorescence 

of the distal colon was measured (left). The same experimental setup compared colitic 

TRUC and control Rag2−/− mice (right). In (B) and (C), the total fluorescence intensity was 

determined in a standard-size region of interest (ROI) drawn around the individual colon 

pieces; data are means ± SEM (n = 5 to 7 mice per group); P values were determined by 

Student’s t test.
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Fig. 4. Drug delivery via IT-hydrogel enema improves therapeutic efficacy when dosed every 
other day
(A) Colitic TRUC mice received enemas on days 1 and 3 after overnight (O/N) fasts; 

animals were sacrificed for analysis on day 5. (B) Histopathology scores after treatment with 

enemas of IT-hydrogel (Gel), free Dex, or Dex-loaded IT-hydrogel (Dex/gel, 70 μg of Dex 

equivalent per dose in both groups). Control mice received no treatment. Data are means ± 

SD (n= 10 mice per group). P = 0.0029 by one-way ANOVA; comparison of individual 

groups by Tukey post hoc test. (C) Representative hematoxylin and eosin (H&E) histology 

images of the experimental groups in (B). (D) Colon weight, MPO activity, and TNF mRNA 

levels in the distal colon measured in a second independent experiment. Data are means ± 

SD (n= 10 mice per group); P values were determined by one-way ANOVA with Tukey post 

hoc test. (E) TRUC mice received four daily intraperitoneal (i.p.) injections of free Dex 

(Dex-21 phosphate, 70 μg of Dex equivalent per dose) or PBS; animals were sacrificed on 

day 5. (F) Histopathology scores for mice in (E) (n = 9 mice per group). (G) Histopathology 

scores for TRUC mice treated with two enemas of Dex-Pal (70 μg of Dex equivalent per 

dose) in vehicle (5% ethanol + 5% Tween 80) or vehicle only (Control) (n = 8 mice per 
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group) using the dosing regimen described in (A). Data in (F) and (G) are means ± SD; P 
values were determined by Student’s t test.
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Fig. 5. Drug delivery via IT-hydrogel enema reduces systemic drug exposure
(A) Experimental design for the pharmacokinetic study. Colitic mice received a single 

enema of either free Dex or Dex-loaded IT-hydrogel (containing 70 μg of Dex equivalent) at 

0 hour after an overnight fast. The serum Dex concentration was determined at 1, 2, 4, 6, 12, 

and 24 hours after enema, and the area under the curve (AUC) was calculated. (B) Results of 

the pharmacokinetic experiment described in (A) for WT mice with or without DSS-induced 

colitis and for TRUC mice compared with Rag2−/− controls. Data are means ± SD (n = 7 to 

10 mice per group); P values were determined by Student’s t test.
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Fig. 6. IT-hydrogel preferentially adheres to inflamed human colon mucosa
(A) Representative IVIS image of duplicate samples from endoscopically normal and 

inflamed sites after incubation with (DiD + Dex)/gel. (B) Fluorescence intensity values for 

individual patient biopsy samples from histologically normal or inflamed locations. Values 

were normalized by tissue dry weight; data are means of duplicate samples. (C) Paired 

fluorescence intensity values for the patients in (B). Lines connected the paired means of 

duplicate samples for individual patients (n = 6). The P value was determined by paired t 
test.
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