53 research outputs found

    Wind vane correction during yaw misalignment for horizontal-axis wind turbines

    Get PDF
    This paper investigates the accuracy of wind direction measurements for horizontal-axis wind turbines and their impact on yaw control. The yaw controller is crucial for aligning the rotor with the wind direction and optimizing energy extraction. Wind direction is conventionally measured by one or two wind vanes located on the nacelle, but the proximity of the rotor can interfere with these measurements. The authors show that the conventional corrections, including low-pass filters and calibrated offset correction, are inadequate to correct a systematic overestimation of the wind direction deviation caused by the rotor misalignment. This measurement error can lead to an overcorrection of the yaw controller and, thus, to an oscillating yaw behaviour, even if the wind direction is relatively steady. The authors present a theoretical basis and methods for quantifying the wind vane measurement error and validate their findings using computational fluid dynamics simulations and operational data from two commercial wind turbines. Additionally, the authors propose a correction function that improves the wind vane measurements and demonstrate its effectiveness in two free-field experiments. Overall, the paper provides new insights into the accuracy of wind direction measurements and proposes solutions to improve the yaw control for horizontal-axis wind turbines.</p

    The habitability of a stagnant-lid Earth

    Full text link
    Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2_2O and CO2_2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2_2O and CO2_2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2_2O and CO2_2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2_2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2_2, can vary in a non-monotonic way depending on the extent of the outgassed H2_2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability

    CRISPaint allows modular base-specific gene tagging using a ligase-4-dependent mechanism

    Get PDF
    The site-specific insertion of heterologous genetic material into genomes provides a powerful means to study gene function. Here we describe a modular system entitled CRISPaint (CRISPR-assisted insertion tagging) that allows precise and efficient integration of large heterologous DNA cassettes into eukaryotic genomes. CRISPaint makes use of the CRISPR-Cas9 system to introduce a double-strand break (DSB) at a user-defined genomic location. A universal donor DNA, optionally provided as minicircle DNA, is cleaved simultaneously to be integrated at the genomic DSB, while processing the donor plasmid at three possible positions allows flexible reading-frame selection. Applying this system allows to create C-terminal tag fusions of endogenously encoded proteins in human cells with high efficiencies. Knocking out known DSB repair components reveals that site-specific insertion is completely dependent on canonical NHEJ (DNA-PKcs, XLF and ligase-4). A large repertoire of modular donor vectors renders CRISPaint compatible with a wide array of applications

    Mapping Exoplanets

    Full text link
    The varied surfaces and atmospheres of planets make them interesting places to live, explore, and study from afar. Unfortunately, the great distance to exoplanets makes it impossible to resolve their disk with current or near-term technology. It is still possible, however, to deduce spatial inhomogeneities in exoplanets provided that different regions are visible at different times---this can be due to rotation, orbital motion, and occultations by a star, planet, or moon. Astronomers have so far constructed maps of thermal emission and albedo for short period giant planets. These maps constrain atmospheric dynamics and cloud patterns in exotic atmospheres. In the future, exo-cartography could yield surface maps of terrestrial planets, hinting at the geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17 pages, including 6 figures and 4 pages of reference

    Imaging and imagination: understanding the endo-lysosomal system

    Get PDF
    Lysosomes are specialized compartments for the degradation of endocytosed and intracellular material and essential regulators of cellular homeostasis. The importance of lysosomes is illustrated by the rapidly growing number of human disorders related to a defect in lysosomal functioning. Here, we review current insights in the mechanisms of lysosome biogenesis and protein sorting within the endo-lysosomal system. We present increasing evidence for the existence of parallel pathways for the delivery of newly synthesized lysosomal proteins directly from the trans-Golgi network (TGN) to the endo-lysosomal system. These pathways are either dependent or independent of mannose 6-phosphate receptors and likely involve multiple exits for lysosomal proteins from the TGN. In addition, we discuss the different endosomal intermediates and subdomains that are involved in sorting of endocytosed cargo. Throughout our review, we highlight some examples in the literature showing how imaging, especially electron microscopy, has made major contributions to our understanding of the endo-lysosomal system today

    De novo variants of CSNK2B cause a new intellectual disability-craniodigital syndrome by disrupting the canonical Wnt signaling pathway

    Get PDF
    CSNK2B encodes for casein kinase II subunit beta (CK2b), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and b-catenin with mutated CK2b. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated b-catenin and consequent absence of active b-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear b-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS

    Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations

    Get PDF
    In this work we discuss various selected mission concepts addressing Venus evolution through time. More specifically, we address investigations and payload instrument concepts supporting scientific goals and open questions presented in the companion articles of this volume. Also included are their related investigations (observations & modeling) and discussion of which measurements and future data products are needed to better constrain Venus’ atmosphere, climate, surface, interior and habitability evolution through time. A new fleet of Venus missions has been selected, and new mission concepts will continue to be considered for future selections. Missions under development include radar-equipped ESA-led EnVision M5 orbiter mission (European Space Agency 2021), NASA-JPL’s VERITAS orbiter mission (Smrekar et al. 2022a), NASA-GSFC’s DAVINCI entry probe/flyby mission (Garvin et al. 2022a). The data acquired with the VERITAS, DAVINCI, and EnVision from the end of this decade will fundamentally improve our understanding of the planet’s long term history, current activity and evolutionary path. We further describe future mission concepts and measurements beyond the current framework of selected missions, as well as the synergies between these mission concepts, ground-based and space-based observatories and facilities, laboratory measurements, and future algorithmic or modeling activities that pave the way for the development of a Venus program that extends into the 2040s (Wilson et al. 2022)

    Influence of rotor blade flexibility on the near-wake behavior of the NREL 5&thinsp;MW wind turbine

    No full text
    High-fidelity computational fluid dynamics (CFD) simulations of the National Renewable Energy Laboratory (NREL) 5 MW wind turbine rotor are performed, comparing the aerodynamic behavior of flexible and rigid blades with respect to local blade quantities as well as the wake properties. The main focus has been set on rotational periodic quantities of blade loading and fluid velocity magnitudes in relation with the blade tip vortex trajectories describing the development of those quantities in the near wake. The results show that the turbine loading in a quasi-steady flow field is mainly influenced by blade deflections due to gravitation. Deforming blades change the aerodynamic behavior, which in turn influences the surrounding flow field, leading to non-uniform wake characteristics with respect to speed and shape.</p

    Reduction of Market Power and Stabilisation of Outcomes in a Novel and Simplified Two-Settlement Electricity Market

    No full text
    Modern electricity markets conduct a two-settlement procedure. Ahead of time, they allocate definite supply as well as reserves. Close to the time of consumption, they balance supply and demand. Bidding in these two auctions poses a challenge for automated bidding by agents, which will be more common in future electricity markets and so-called “smart grids”. In a decision-theoretic model, we implement the current bidding practice that uses two independent bids and a novel, unified format that simplifies computation. We show through Monte-Carlo simulations in one-shot settings that the unified format restricts market power of suppliers in exploitable settings, and is also less vulnerable to uncertainty of bidders about market outcomes
    • …
    corecore