207 research outputs found

    Corrugation of relativistic magnetized shock waves

    Full text link
    As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.Comment: 14 pages, 9 figures; to appear in Ap

    Current-driven filamentation upstream of magnetized relativistic collisionless shocks

    Full text link
    The physics of instabilities in the precursor of relativistic collisionless shocks is of broad importance in high energy astrophysics, because these instabilities build up the shock, control the particle acceleration process and generate the magnetic fields in which the accelerated particles radiate. Two crucial parameters control the micro-physics of these shocks: the magnetization of the ambient medium and the Lorentz factor of the shock front; as of today, much of this parameter space remains to be explored. In the present paper, we report on a new instability upstream of electron-positron relativistic shocks and we argue that this instability shapes the micro-physics at moderate magnetization levels and/or large Lorentz factors. This instability is seeded by the electric current carried by the accelerated particles in the shock precursor as they gyrate around the background magnetic field. The compensation current induced in the background plasma leads to an unstable configuration, with the appearance of charge neutral filaments carrying a current of the same polarity, oriented along the perpendicular current. This ``current-driven filamentation'' instability grows faster than any other instability studied so far upstream of relativistic shocks, with a growth rate comparable to the plasma frequency. Furthermore, the compensation of the current is associated with a slow-down of the ambient plasma as it penetrates the shock precursor (as viewed in the shock rest frame). This slow-down of the plasma implies that the ``current driven filamentation'' instability can grow for any value of the shock Lorentz factor, provided the magnetization \sigma <~ 10^{-2}. We argue that this instability explains the results of recent particle-in-cell simulations in the mildly magnetized regime.Comment: 14 pages, 8 figures; to appear in MNRA

    The various manifestations of collisionless dissipation in wave propagation

    Full text link
    The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show here that the electrons are still globally accelerated by the wave packet, and, in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and, therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, this leads to an effective defocussing effect which we quantify, and which we compare to the self-focussing induced by wave front bowing.Comment: 23 pages, 6 figure

    Modeling terahertz emissions from energetic electrons and ions in foil targets irradiated by ultraintense femtosecond laser pulses

    Full text link
    Terahertz (THz) emissions from fast electron and ion currents driven in relativistic, femtosecond laser-foil interactions are examined theoretically. We first consider the radiation from the energetic electrons exiting the backside of the target. Our kinetic model takes account of the coherent transition radiation due to these electrons crossing the plasma-vacuum interface as well as of the synchrotron radiation due to their deflection and deceleration in the sheath field they set up in vacuum. After showing that both mechanisms tend to largely compensate each other when all the electrons are pulled back into the target, we investigate the scaling of the net radiation with the sheath field strength. We then demonstrate the sensitivity of this radiation to a percent-level fraction of escaping electrons. We also study the influence of the target thickness and laser focusing. The same sheath field that confines most of the fast electrons around the target rapidly sets into motion the surface ions. We describe the THz emission from these accelerated ions and their accompanying hot electrons by means of a plasma expansion model that allows for finite foil size and multidimensional effects. Again, we explore the dependencies of this radiation mechanism on the laser-target parameters. Under conditions typical of current ultrashort laser-solid experiments, we find that the THz radiation from the expanding plasma is much less energetic -- by one to three orders of magnitude -- than that due to the early-time motion of the fast electrons
    corecore