405 research outputs found
Comparison of the action of different proteases on virulence properties related to the staphylococcal surface.
AIMS:
The purpose of this study was to evaluate the antimicrobial efficacy of five different proteases belonging to two different families on Staphylococcus aureus and Staphylococcus epidermidis strains.
METHODS AND RESULTS:
We used three serine proteases and two metalloproteases in single species biofilm formation assays and in human cell invasion processes. Following each protease incubation with bacterial cells, surface protein patterns were analysed by SDS-PAGE and zymography. Some differently expressed proteins were identified by mass spectrometry.
CONCLUSIONS:
The effect of tested proteases on biofilm formation was not related to the protease category but was strain-dependent and was related to the biofilm formation capacity of each staphylococcal strain. Some proteases showed a nonspecific and indiscriminate effect on surface proteins, while others induced a discrete and reproducible action on protein profiles.
SIGNIFICANCE AND IMPACT OF THE STUDY:
The inhibition of the surface-related virulence factors is a promising avenue to overcome persistent infections caused by bacterial biofilms. To this end, we show here that proteases, in particular the metalloprotease serratiopeptidase, can interfere with adhesion and invasion of eukaryotic cells and biofilm formation in staphylococci and their use could represent a viable treatment for the development of novel combination therapie
Design of Intervention Program for Preventing of Alcohol Misuse in University Students
In the Universidad de Oriente of Santiago de Cuba, recent diagnoses showed there is currently an increase in the rate of young people who consume alcoholic beverages. Therefore, the present research has like General Objective: To design a psychoeducational intervention program to prevent the undue consumption of alcohol in the Student Residence of the University of the East of Santiago de Cuba. Techniques such as Composition, Risk Perception Questionnaire on Alcohol Consumption, Social Skills Questionnaire and Preference Questionnaire for leisure time have used. The main results were that 94% of these young people had a low perception of risk on alcohol consumption and only 15% were able to identify the main negative consequences associated with consumption. 96% had insufficient development of social skills, which is associated with the poor ability to resist the pressure of the group
Phytomelatonin: Assisting plants to survive and thrive
This review summarizes the advances that have been made in terms of the identified functions of melatonin in plants. Melatonin is an endogenously-produced molecule in all plant species that have been investigated. Its concentration in plant organs varies in different tissues, e.g., roots versus leaves, and with their developmental stage. As in animals, the pathway of melatonin synthesis in plants utilizes tryptophan as an essential precursor molecule. Melatonin synthesis is inducible in plants when they are exposed to abiotic stresses (extremes of temperature, toxins, increased soil salinity, drought, etc.) as well as to biotic stresses (fungal infection). Melatonin aids plants in terms of root growth, leaf morphology, chlorophyll preservation and fruit development. There is also evidence that exogenously-applied melatonin improves seed germination, plant growth and crop yield and its application to plant products post-harvest shows that melatonin advances fruit ripening and may improve food quality. Since melatonin was only discovered in plants two decades ago, there is still a great deal to learn about the functional significance of melatonin in plants. It is the hope of the authors that the current review will serve as a stimulus for scientists to join the endeavor of clarifying the function of this phylogenetically-ancient molecule in plants and particularly in reference to the mechanisms by which melatonin mediates its multiple actions
A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus.
Staphylococcus aureus is a flexible microbial pathogen frequently isolated from community-acquired and nosocomial infections. S. aureus expresses a wide array of secreted and cell surface-associated virulence factors, including proteins that promote adhesion to damaged tissue and to the surface of host cells, and that bind proteins in blood to help evade immune responses. Furthermore, surface proteins have a fundamental role in virulence related properties of S. aureus, including biofilm formation. The present study evaluates the anti-infective capabilities of a secreted protein of Serratia marcescens (serratiopeptidase, SPEP), in impairing some staphylococcal virulence-related properties, such as attachment to inert surfaces and adhesion/invasion on eukaryotic cells. SPEP seems to exert its action by modulating specific proteins. It is not assessed if this action is due to the proteolytic activity of SPEP or to a specific mechanism which triggers an out/inside signal. Proteomic studies performed on surface proteins extracted from SPEP treated S. aureus cultures revealed that a number of proteins are affected by the treatment. Among these we found the adhesin/autolysin Atl, SdrD, Sbi, EF-Tu and EF-G. EF-Tu and EF-G are known to perform a variety of function, depending on their cytoplasmic or surface localization. All these factors can facilitate bacterial colonization, persistence and invasion of host tissues. Our results suggest that SPEP could be developed as a potential "anti-infective agent" capable to hinder the entry of S. aureus into human tissues, and also impairs the ability of this pathogen to adhere to prostheses, catheters and medical device
Describing astronomy identity of upper primary and middle school students through structural equation modeling
We describe how young students situate themselves with respect to astronomy through an identity framework that features four dimensions: interest, utility value, confidence, and conceptual knowledge. Overall, about 900 Italian students, from 5th to 9th grade (9-14 years old), were involved in the study. We tested our model using confirmatory factor analysis and structural equation modeling. Differences between girls and boys and across school levels were also investigated. Results show that interest has both a direct and an indirect effect on astronomy identity. The indirect effect of interest on identity is mediated by utility value. Moreover, confidence mediates the effect of interest on conceptual knowledge. Concerning differences between girls and boys, we found that the effect of interest on identity is greater for girls than for boys and that the utility value mediates the effect of interest on identity for boys but not for girls. Finally, our findings show also that the students' interest in astronomy and confidence in their performance decrease with age, with a potential negative impact on conceptual knowledge and future career choice in astronomy. The astronomy identity framework can be employed to examine the role of affective variables on performance and persistence in astronomy and to improve the design of teaching-learning activities that can potentially stimulate a lasting interest in astronomy
F4-Neuroprostane Effects on Human Sperm
Swim-up selected human sperm were incubated with 7 ng F4-neuroprostanes (F4-NeuroPs) for 2 and 4 h. Sperm motility and membrane mitochondrial potential (MMP) were evaluated. The percentage of reacted acrosome was assessed by pisum sativum agglutinin (PSA). Chromatin integrity was detected using the acridine orange (AO) assay and localization of the ryanodine receptor was performed by immunofluorescence analysis. Sperm progressive motility (p = 0.02) and the percentage of sperm showing a strong MMP signal (p = 0.012) significantly increased after 2 h F4-NeuroP incubation compared to control samples. The AO assay did not show differences in the percentage of sperm with dsDNA between treated or control samples. Meanwhile, a significantly higher number of sperm with reacted acrosomes was highlighted by PSA localization after 4 h F4-NeuroP incubation. Finally, using an anti-ryanodine antibody, the immunofluorescence signal was differentially distributed at 2 and 4 h: a strong signal was evident in the midpiece and postacrosomal sheath (70% of sperm) at 2 h, whereas a dotted one appeared at 4 h (53% of sperm). A defined concentration of F4-NeuroPs in seminal fluid may induce sperm capacitation via channel ions present in sperm cells, representing an aid during in vitro sperm preparation that may increase the positive outcome of assisted fertilization
A simple and reliable methodology to detect egg white in art samples
A protocol for a simple and reliable dot-blot immunoassay was developed and optimized to test work of art samples
for the presence of specific proteinaceus material (i.e. ovalbumin-based). The analytical protocol has been extensively
set up with respect, among the other, to protein extraction conditions, to densitometric analysis and to the colorimetric
reaction conditions. Feasibility evaluation demonstrated that a commercial scanner and a free image analysis software
can be used for the data acquisition and elaboration, thus facilitating the application of the proposed protocol to
commonly equipped laboratories and to laboratories of museums and conservation centres. The introduction of
method of standard additions in the analysis of fresh and artificially aged laboratory-prepared samples, containing
egg white and various pigments, allowed us to evaluate the matrix effect and the effect of sample aging and to generate
threshold density values useful for the detection of ovalbumin in samples from ancient works of art. The efficacy of
the developed dot-blot immunoassay was proved testing microsamples from 13th–16th century mural paintings of
Saint Francesco Church in Lodi (Italy). Despite the aging, the altered conditions of conservation, the complex matrix,
and the micro-size of samples, the presence of ovalbumin was detected in all those mural painting samples where
mass-spectrometry-based proteomic analysis unambiguously detected ovalbumin peptides
Accurate and efficient constrained molecular dynamics of polymers using Newton's method and special purpose code
In molecular dynamics simulations we can often increase the time step by imposing constraints on bond lengths and bond angles. This allows us to extend the length of the time interval and therefore the range of physical phenomena that we can afford to simulate. We examine the existing algorithms and software for solving nonlinear constraint equations in parallel and we explain why it is necessary to advance the state-of-the-art. We present ILVES-PC, a new algorithm for imposing bond constraints on proteins accurately and efficiently. It solves the same system of differential algebraic equations as the celebrated SHAKE algorithm, but ILVES-PC solves the nonlinear constraint equations using Newton’s method rather than the nonlinear Gauss-Seidel method. Moreover, ILVES-PC solves the necessary linear systems using a specialized linear solver that exploits the structure of the protein. ILVES-PC can rapidly solve constraint equations as accurately as the hardware will allow. The run-time of ILVES-PC is proportional to the number of constraints. We have integrated ILVES-PC into GROMACS and simulated proteins of different sizes. Compared with SHAKE, we have achieved speedups of up to 4.9× in single-threaded executions and up to 76× in shared-memory multi-threaded executions. Moreover, ILVES-PC is more accurate than P-LINCS algorithm. Our work is a proof-of-concept of the utility of software designed specifically for the simulation of polymers
- …