10,881 research outputs found

    Electron paramagnetic resonance and photochromism of N3V0\mathrm{N}_{3}\mathrm{V}^{0} in diamond

    Get PDF
    The defect in diamond formed by a vacancy surrounded by three nearest-neighbor nitrogen atoms and one carbon atom, N3V\mathrm{N}_{3}\mathrm{V}, is found in 98%\approx98\% of natural diamonds. Despite N3V0\mathrm{N}_{3}\mathrm{V}^{0} being the earliest electron paramagnetic resonance spectrum observed in diamond, to date no satisfactory simulation of the spectrum for an arbitrary magnetic field direction has been produced due to its complexity. In this work, N3V0\mathrm{N}_{3}\mathrm{V}^{0} is identified in 15N^{15}\mathrm{N}-doped synthetic diamond following irradiation and annealing. The 15N3V0\mathrm{^{15}N}_{3}\mathrm{V}^{0} spin Hamiltonian parameters are revised and used to refine the parameters for 14N3V0\mathrm{^{14}N}_{3}\mathrm{V}^{0}, enabling the latter to be accurately simulated and fitted for an arbitrary magnetic field direction. Study of 15N3V0\mathrm{^{15}N}_{3}\mathrm{V}^{0} under excitation with green light indicates charge transfer between N3V\mathrm{N}_{3}\mathrm{V} and Ns\mathrm{N_s}. It is argued that this charge transfer is facilitated by direct ionization of N3V\mathrm{N}_{3}\mathrm{V}^{-}, an as-yet unobserved charge state of N3V\mathrm{N}_{3}\mathrm{V}

    Pseudo-potential treatment of two aligned dipoles under external harmonic confinement

    Get PDF
    Dipolar Bose and Fermi gases, which are currently being studied extensively experimentally and theoretically, interact through anisotropic, long-range potentials. Here, we replace the long-range potential by a zero-range pseudo-potential that simplifies the theoretical treatment of two dipolar particles in a harmonic trap. Our zero-range pseudo-potential description reproduces the energy spectrum of two dipoles interacting through a shape-dependent potential under external confinement very well, provided that sufficiently many partial waves are included, and readily leads to a classification scheme of the energy spectrum in terms of approximate angular momentum quantum numbers. The results may be directly relevant to the physics of dipolar gases loaded into optical lattices.Comment: 9 pages, 4 figure

    Levinson's theorem for the Schr\"{o}dinger equation in two dimensions

    Full text link
    Levinson's theorem for the Schr\"{o}dinger equation with a cylindrically symmetric potential in two dimensions is re-established by the Sturm-Liouville theorem. The critical case, where the Schr\"{o}dinger equation has a finite zero-energy solution, is analyzed in detail. It is shown that, in comparison with Levinson's theorem in non-critical case, the half bound state for PP wave, in which the wave function for the zero-energy solution does not decay fast enough at infinity to be square integrable, will cause the phase shift of PP wave at zero energy to increase an additional π\pi.Comment: Latex 11 pages, no figure and accepted by P.R.A (in August); Email: [email protected], [email protected]

    Scattering of charge carriers by point defects in bilayer graphene

    Get PDF
    Theory of scattering of massive chiral fermions in bilayer graphene by radial symmetric potential is developed. It is shown that in the case when the electron wavelength is much larger than the radius of the potential the scattering cross-section is proportional to the electron wavelength. This leads to the mobility independent on the electron concentration. In contrast with the case of single-layer, neutral and charged defects are, in general, equally relevant for the resistivity of the bilayer graphene.Comment: final versio

    Two-dimensional scattering and bound states of polar molecules in bilayers

    Full text link
    Low-energy two-dimensional scattering is particularly sensitive to the existence and properties of weakly-bound states. We show that interaction potentials V(r)V(r) with vanishing zero-momentum Born approximation d2rV(r)=0\int d^2r V(r)=0 lead to an anomalously weak bound state which crucially modifies the two-dimensional scattering properties. This anomalous case is especially relevant in the context of polar molecules in bilayer arrangements.Comment: 4 pages, 3 figure

    A New Study of the Transition to Uniform Nuclear Matter in Neutron Stars and Supernovae

    Full text link
    A comprehensive microscopic study of the properties of bulk matter at densities just below nuclear saturation ρs=2.51014\rho_s = 2.5 \sim 10^{14} g cm3^{-3}, zero and finite temperature and high neutron fraction, is outlined, and preliminary results presented. Such matter is expected to exist in the inner crust of neutron stars and during the core collapse of massive stars with $M \gtrsim 8M_{\odot}Comment: 4 pages, 2 figures. Participant Contribution at the ``Dense Matter in Heavy Ion Collisions and Astrophysics" Summer School, JINR, Dubna, Aug. 21 - Sept. 1, 2006. To be published in PEPAN letter

    Three body problem in a dilute Bose-Einstein condensate

    Get PDF
    We derive the explicit three body contact potential for a dilute condensed Bose gas from microscopic theory. The three body coupling constant exhibits the general form predicted by T.T. Wu [Phys. Rev. 113, 1390 (1959)] and is determined in terms of the amplitudes of two and three body collisions in vacuum. In the present form the coupling constant becomes accessible to quantitative studies which should provide the crucial link between few body collisions and the stability of condensates with attractive two body forces

    Improvements and modifications to the NASA microwave signature acquisition system

    Get PDF
    A user oriented description of the modified and upgraded Microwave Signature Acquisition System is provided. The present configuration of the sensor system and its operating characteristics are documented and a step-by-step operating procedure provides instruction for mounting the antenna truss assembly, readying the system for data acquisition, and for controlling the system during the data collection sequence. The resulting data products are also identified

    Generalized Mean Field Approach to a Resonant Bose-Fermi Mixture

    Full text link
    We formulate a generalized mean-field theory of a mixture of fermionic and bosonic atoms, in which the fermion-boson interaction can be controlled by a Feshbach resonance. The theory correctly accounts for molecular binding energies of the molecules in the two-body limit, in contrast to the most straightforward mean-field theory. Using this theory, we discuss the equilibrium properties of fermionic molecules created from atom pairs in the gas. We also address the formation of molecules when the magnetic field is ramped across the resonance, and present a simple Landau-Zener result for this process.Comment: 35 page
    corecore