271 research outputs found

    The Unusual Luminosity Function of the Globular Cluster M10

    Get PDF
    We present the I-band luminosity function of the differentially reddened globular cluster M10. We combine photometric analysis derived from wide-field (23' x 23') images that include the outer regions of the cluster and high-resolution images of the cluster core. After making corrections for incompleteness and field star contamination, we find that the relative numbers of stars on the lower giant branch and near the main-sequence turnoff are in good agreement with theoretical predictions. However, we detect significant (> 6 \sigma) excesses of red giant branch stars above and below the red giant branch bump using a new statistic (a population ratio) for testing relative evolutionary timescales of main-sequence and red giant stars. The statistic is insensitive to assumed cluster chemical composition, age, and main-sequence mass function. The excess number of red giants cannot be explained by reasonable systematic errors in our assumed cluster chemical composition, age, or main-sequence mass function. Moreover, M10 shows excesses when compared to the cluster M12, which has nearly identical metallicity, age, and color-magnitude diagram morphology. We discuss possible reasons for this anomaly, finding that the most likely cause is a mass function slope that shows significant variations as a function of mass.Comment: 31 pages, 12 figures, accepted for Ap

    The Dual Role of Outflows in Quenching Satellites of Low-Mass Hosts: NGC 3109

    Full text link
    While dwarf galaxies observed in the field are overwhelmingly star-forming, dwarf galaxies in environments as dense or denser than the Milky Way are overwhelmingly quenched. In this paper, we explore quenching in the lower density environment of the Small-Magellanic-Cloud-mass galaxy NGC 3109 (M∗∼108 M⊙\text{M}_* \sim 10^8 \, \text{M}_\odot), which hosts two known dwarf satellite galaxies (Antlia and Antlia B), both of which are HI deficient compared to similar galaxies in the field and have recently stopped forming stars. Using a new semi-analytic model in concert with the measured star formation histories and gas masses of the two dwarf satellite galaxies, we show that they could not have been quenched solely by direct ram pressure stripping of their interstellar media, as is common in denser environments. Instead, we find that separation of the satellites from pristine gas inflows, coupled with stellar-feedback-driven outflows from the satellites (jointly referred to as the starvation quenching model), can quench the satellites on timescales consistent with their likely infall times into NGC 3109's halo. It is currently believed that starvation is caused by "weak" ram pressure that prevents low-density, weakly-bound gas from being accreted onto the dwarf satellite, but cannot directly remove the denser interstellar medium. This suggests that star-formation-driven outflows serve two purposes in quenching satellites in low-mass environments: outflows from the host form a low-density circumgalactic medium that cannot directly strip the interstellar media from its satellites, but is sufficient to remove loosely-bound gaseous outflows from the dwarf satellites driven by their own star formation.Comment: 20 pages and 2 appendices. To be submitted to MNRAS. Comments welcome

    Nonlinear vertical oscillations of a particle in a sheath of a rf discharge

    Full text link
    A new simple method to measure the spatial distribution of the electric field in the plasma sheath is proposed. The method is based on the experimental investigation of vertical oscillations of a single particle in the sheath of a low-pressure radio-frequency discharge. It is shown that the oscillations become strongly nonlinear and secondary harmonics are generated as the amplitude increases. The theory of anharmonic oscillations provides a good qualitative description of the data and gives estimates for the first two anharmonic terms in an expansion of the sheath potential around the particle equilibrium.Comment: 11 pages, 4 figure

    Scarless and site-directed mutagenesis in Salmonella enteritidis chromosome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A variety of techniques have been described which introduce scarless, site-specific chromosomal mutations. These techniques can be applied to make point mutations or gene deletions as well as insert heterologous DNA into bacterial vectors for vaccine development. Most methods use a multi-step approach that requires cloning and/or designing repeat sequences to facilitate homologous recombination. We have modified previously published techniques to develop a simple, efficient PCR-based method for scarless insertion of DNA into <it>Salmonella enteritidis </it>chromosome.</p> <p>Results</p> <p>The final product of this mutation strategy is the insertion of DNA encoding a foreign epitope into the <it>S. enteritidis </it>genome without the addition of any unwanted sequence. This experiment was performed by a two-step mutation process via PCR fragments, Red recombinase and counter-selection with the I-SceI enzyme site. First, the I-SceI site and kanamycin resistance gene were introduced into the genome of cells expressing Red recombinase enzymes. Next, this sequence was replaced by a chosen insertion sequence. DNA fragments used for recombination were linear PCR products which consisted of the foreign insertion sequence flanked by homologous sequences of the target gene. Described herein is the insertion of a section of the M2e epitope (LM2) of Influenza A virus, a domain of CD154 (CD154s) or a combination of both into the outer membrane protein LamB of <it>S. enteritidis</it>.</p> <p>Conclusion</p> <p>We have successfully used this method to produce multiple mutants with no antibiotic gene on the genome or extra sequence except those nucleotides required for expression of epitope regions. This method is advantageous over other protocols in that it does not require cloning or creating extra duplicate regions to facilitate homologous recombination, contains a universal construct in which an epitope of choice can be placed to check for cell surface expression, and shows high efficiency when screening for positive mutants. Other opportunities of this mutational strategy include creating attenuated mutants and site-specific, chromosomal deletion mutations. Furthermore, this method should be applicable in other gram-negative bacterial species where Red recombinase enzymes can be functionally expressed.</p

    Compositions and methods of enhancing immune responses to Eimeria

    Get PDF
    Vaccines comprising TRAP polypeptides and Salmonella enteritidis vectors comprising TRAP polypeptides are provided. The vaccines may also include a CD154 polypeptide capable of binding to CD40. Also provided are methods of enhancing an immune response against Apicomplexan parasites and methods of reducing morbidity associated with infection with Apicomplexan parasites

    Compositions and methods of enhancing immune responses to Eimeria

    Get PDF
    Vaccines comprising TRAP polypeptides and Salmonella enteritidis vectors comprising TRAP polypeptides are provided. The vaccines may also include a CD154 polypeptide capable of binding to CD40. Also provided are methods of enhancing an immune response against Apicomplexan parasites and methods of reducing morbidity associated with infection with Apicomplexan parasites

    Why is the mass function of NGC 6218 flat?

    Full text link
    We have used the FORS-1 camera on the VLT to study the main sequence (MS) of the globular cluster NGC 6218 in the V and R bands. The observations cover an area of 3.4 x 3.4 around the cluster centre and probe the stellar population out to the cluster's half-mass radius (r_h ~ 2.2). The colour-magnitude diagram (CMD) that we derive in this way reveals a narrow and well defined MS extending down to the 5 sigma detection limit at V~25, or about 6 magnitudes below the turn-off, corresponding to stars of ~ 0.25 Msolar. The luminosity function (LF) obtained with these data shows a marked radial gradient, in that the ratio of lower- and higher-mass stars increases monotonically with radius. The mass function (MF) measured at the half-mass radius, and as such representative of the clusters global properties, is surprisingly flat. Over the range 0.4 - 0.8 Msolar, the number of stars per unit mass follows a power-law distribution of the type dN/dm \propto m^{0}, where, for comparison, Salpeter's IMF would be dN/dm \propto m^{-2.35}. We expect that such a flat MF does not represent the cluster's IMF but is the result of severe tidal stripping of the stars from the cluster due to its interaction with the Galaxy's gravitational field. Our results cannot be reconciled with the predictions of recent theoretical models that imply a relatively insignificant loss of stars from NGC 6218 as measured by its expected very long time to disruption. They are more consistent with the orbital parameters based on the Hipparcos reference system that imply a much higher degree of interaction of this cluster with the Galaxy than assumed by those models. Our results indicate that, if the orbit of a cluster is known, the slope of its MF could be useful in discriminating between the various models of the Galactic potential.Comment: 11 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Hubble Space Telescope Imaging of Antlia B: Star Formation History and a New Tip of the Red Giant Branch Distance

    Get PDF
    A census of the satellite population around dwarf galaxy primary hosts in environments outside the Local Group is essential to understanding Λ cold dark matter galaxy formation and evolution on the smallest scales. We present deep optical Hubble Space Telescope imaging of the gas-rich, faint dwarf galaxy Antlia B (M_V = −9.4)—a likely satellite of NGC 3109 (D = 1.3 Mpc)—discovered as part of our ongoing survey of primary host galaxies similar to the Magellanic Clouds. We derive a new tip of the red giant branch distance of D = 1.35 ± 0.06 Mpc (m − M = 25.65 ± 0.10), consistent with membership in the nearby NGC 3109 dwarf association. The color–magnitude diagram (CMD) shows both a prominent old, metal-poor stellar component and confirms a small population of young, blue stars with ages ≾1 Gyr. We use the CMD fitting algorithm MATCH to derive the star formation history (SFH) and find that it is consistent with the typical dwarf irregular or transitional dwarf galaxy (dTrans) in the Local Group. Antlia B shows relatively constant stellar mass growth for the first ~10–11 Gyr and almost no growth in the last ~2–3 Gyr. Despite being gas-rich, Antlia B shows no evidence of active star formation (i.e., no Hα emission) and should therefore be classified as a dTrans dwarf. Both Antlia B and the Antlia dwarf (dTrans) are likely satellites of NGC 3109, suggesting that the cessation of ongoing star formation in these galaxies may be environmentally driven. Future work studying the gas kinematics and distribution in Antlia B will explore this scenario in greater detail. Our work highlights the fact that detailed studies of nearby dwarf galaxies in a variety of environments may continue to shed light on the processes that drive the SFH and evolution of dwarf galaxies more generally
    • …
    corecore