73 research outputs found

    Relationship between serum soluble endothelial protein C receptor level and COVID-19 findings

    Get PDF
    Coronavirus-related disease-2019 (COVID-19)-associated coagulopathy presents predominantly with thrombosis and leads to complications in close association with inflammatory process. Soluble endothelial protein C receptor (sEPCR), which is the soluble form of EPCR, reduces the anticoagulant and anti-inflammatory activity of activated protein C. The purpose of this study is to investigate the relationship between sEPCR and the laboratory parameters and thorax computed tomography (CT) findings in the course of COVID-19. Twenty-five laboratory-confirmed [reverse transcription-quantitative polimerase chain reaction (RT-qPCR) positive] and 24 clinically diagnosed (RT-qPCR negative) COVID-19 patients were enrolled in the study. Blood specimens were collected for sEPCR and haematological and biochemical parameter measurement. Thorax CT was performed to detect COVID-19 findings. These parameters from RT-qPCR positive and negative patients were then compared. Although there was no difference between the groups in terms of symptoms, the time between the onset of symptoms and the admission time was shorter in RT-qPCR positive group (P?=?0.000). sEPCR levels were significantly higher in the RT-qPCR positive group (P?=?0.011). Patients with ground-glass opacity and bilateral involvement on thorax CT have higher serum sEPCR levels (P?=?0.012 and 0.043, respectively). This study has shown for the first time that serum sEPCR levels, which is a member of coagulation cascade and has also been reported to be associated with inflammation, is higher in patients with positive RT-qPCR test and patients with GGO or bilateral involvement on thorax CT regardless of the PCR result. Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved

    Structure of the northwestern North Anatolian Fault Zone imaged via teleseismic scattering tomography

    Get PDF
    Information on fault zone structure is essential for our understanding of earthquake mechanics, continental deformation and seismic hazard. We use the scattered seismic wavefield to study the subsurface structure of the North Anatolian Fault Zone (NAFZ) in the region of the 1999 İzmit and Düzce ruptures using data from an 18-month dense deployment of seismometers with a nominal station spacing of 7 km. Using the forward- and back-scattered energy that follows the direct P-wave arrival from teleseismic earthquakes, we apply a scattered wave inversion approach and are able to resolve changes in lithospheric structure on a scale of 10 km or less in an area of about 130 km by 100 km across the NAFZ. We find several crustal interfaces that are laterally incoherent beneath the surface strands of the NAFZ and evidence for contrasting crustal structures either side of the NAFZ, consistent with the presence of juxtaposed crustal blocks and ancient suture zones. Although the two strands of the NAFZ in the study region strike roughly east–west, we detect strong variations in structure both north–south, across boundaries of the major blocks, and east–west, parallel to the strike of the NAFZ. The surface expression of the two strands of the NAFZ is coincident with changes on main interfaces and interface terminations throughout the crust and into the upper mantle in the tomographic sections. We show that a dense passive network of seismometers is able to capture information from the scattered seismic wavefield and, using a tomographic approach, to resolve the fine scale structure of crust and lithospheric mantle even in geologically complex regions. Our results show that major shear zones exist beneath the NAFZ throughout the crust and into the lithospheric mantle, suggesting a strong coupling of strain at these depths

    Flavaglines Alleviate Doxorubicin Cardiotoxicity: Implication of Hsp27

    Get PDF
    Background: Despite its effectiveness in the treatment of various cancers, the use of doxorubicin is limited by a potentially fatal cardiomyopathy. Prevention of this cardiotoxicity remains a critical issue in clinical oncology. We hypothesized that flavaglines, a family of natural compounds that display potent neuroprotective effects, may also alleviate doxorubicininduced cardiotoxicity. Methodology/Principal Findings: Our in vitro data established that a pretreatment with flavaglines significantly increased viability of doxorubicin-injured H9c2 cardiomyocytes as demonstrated by annexin V, TUNEL and active caspase-3 assays. We demonstrated also that phosphorylation of the small heat shock protein Hsp27 is involved in the mechanism by which flavaglines display their cardioprotective effect. Furthermore, knocking-down Hsp27 in H9c2 cardiomyocytes completely reversed this cardioprotection. Administration of our lead compound (FL3) to mice attenuated cardiomyocyte apoptosis and cardiac fibrosis, as reflected by a 50 % decrease of mortality. Conclusions/Significance: These results suggest a prophylactic potential of flavaglines to prevent doxorubicin-induce

    Palaeozoic-Recent geological development and uplift of the Amanos Mountains (S Turkey) in the critically located northwesternmost corner of the Arabian continent

    Get PDF
    <p>We have carried out a several-year-long study of the Amanos Mountains, on the basis of which we present new sedimentary and structural evidence, which we combine with existing data, to produce the first comprehensive synthesis in the regional geological setting. The ca. N-S-trending Amanos Mountains are located at the northwesternmost edge of the Arabian plate, near the intersection of the African and Eurasian plates. Mixed siliciclastic-carbonate sediments accumulated on the north-Gondwana margin during the Palaeozoic. Triassic rift-related sedimentation was followed by platform carbonate deposition during Jurassic-Cretaceous. Late Cretaceous was characterised by platform collapse and southward emplacement of melanges and a supra-subduction zone ophiolite. Latest Cretaceous transgressive shallow-water carbonates gave way to deeper-water deposits during Palaeocene-Eocene. Eocene southward compression, reflecting initial collision, resulted in open folding, reverse faulting and duplexing. Fluvial, lagoonal and shallow-marine carbonates accumulated during Late Oligocene(?)-Early Miocene, associated with basaltic magmatism. Intensifying collision during Mid-Miocene initiated a foreland basin that then infilled with deep-water siliciclastic gravity flows. Late Miocene-Early Pliocene compression created mountain-sized folds and thrusts, verging E in the north but SE in the south. The resulting surface uplift triggered deposition of huge alluvial outwash fans in the west. Smaller alluvial fans formed along both mountain flanks during the Pleistocene after major surface uplift ended. Pliocene-Pleistocene alluvium was tilted towards the mountain front in the west. Strike-slip/transtension along the East Anatolian Transform Fault and localised sub-horizontal Quaternary basaltic volcanism in the region reflect regional transtension during Late Pliocene-Pleistocene (<4 Ma).</p

    Immediate adverse reactions to subcutaneous allergen specific immunotherapy in respiratory allergies

    No full text
    Objective: Allergen immunotherapy has been used in the management of allergic diseases for nearly a hundred years; however, its short term side-effects can effect the decision of starting the therapy. Material and Methods: This study is a retrospective evaluation of the immediate local and systemic reactions seen in the cases who were given immunotherapy between March 1997 and September 2008 in the Ege University Faculty of Medicine, Department of Pediatric Allergy and Pulmonology. Results: The 541 patients had ages ranging from 6 to 18 years. 64.3% (n=348) of the patients were having calcium phosphate-adsorbed allergen vaccines, while35.7% (n=193)were having aluminium hydroxide adsorbed vaccines. Of the patients, 229 patients had allergic rhinitis (42.3%), 161 had asthma (29.7%), and 151 had both asthma and allergic rhinitis(27.9%). Totally, 28.374 injections were given to the patients. In 4.6% (n=1310) of the injections immediate reactions were detected; 74% (n=970) of them were observed during the build-up therapy (p<0.01), and 81.6% (n=1069) of the reactions were detected in the patients who were receiving calcium phosphate-adsorbed vaccines (p< 0.01). There was no statistically significant difference in the immediate reaction rates of the subjects when comparing the allergens in the vaccines or the diagnosis of the patients. The frequency of systemic reactions was 0.04% (n 13); most of these reactions were detected during the build-up therapy and in patients with asthma + allergic rhinitis. With early term interventions, the symptoms of all patients improved in a short time. Conclusion: In conclusion, most of the immediate reactions to immunotherapy are local and the systemic ones are controllable through early treatment; so that subcutaneous immunotherapy is a safe treatment modality when it is used for appropriate indications by experienced staff. Copyright © 2010 by Türkiye Klinikleri
    corecore