1,196 research outputs found

    Las polineuritis

    Get PDF

    Arterio-Block o endocarditis obliterante generalizada

    Get PDF

    Magnetic properties and domain structure of (Ga,Mn)As films with perpendicular anisotropy

    Full text link
    The ferromagnetism of a thin GaMnAs layer with a perpendicular easy anisotropy axis is investigated by means of several techniques, that yield a consistent set of data on the magnetic properties and the domain structure of this diluted ferromagnetic semiconductor. The magnetic layer was grown under tensile strain on a relaxed GaInAs buffer layer using a procedure that limits the density of threading dislocations. Magnetometry, magneto-transport and polar magneto-optical Kerr effect (PMOKE) measurements reveal the high quality of this layer, in particular through its high Curie temperature (130 K) and well-defined magnetic anisotropy. We show that magnetization reversal is initiated from a limited number of nucleation centers and develops by easy domain wall propagation. Furthermore, MOKE microscopy allowed us to characterize in detail the magnetic domain structure. In particular we show that domain shape and wall motion are very sensitive to some defects, which prevents a periodic arrangement of the domains. We ascribed these defects to threading dislocations emerging in the magnetic layer, inherent to the growth mode on a relaxed buffer

    Magnetic patterning of (Ga,Mn)As by hydrogen passivation

    Full text link
    We present an original method to magnetically pattern thin layers of (Ga,Mn)As. It relies on local hydrogen passivation to significantly lower the hole density, and thereby locally suppress the carrier-mediated ferromagnetic phase. The sample surface is thus maintained continuous, and the minimal structure size is of about 200 nm. In micron-sized ferromagnetic dots fabricated by hydrogen passivation on perpendicularly magnetized layers, the switching fields can be maintained closer to the continuous film coercivity, compared to dots made by usual dry etch techniques

    Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers

    Full text link
    We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field, H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H->0. Several features of the bound states are reproduced using a one dimensional model, illustrating their general nature.Comment: 5 pages, 4 figures, to be published in Physical Review Letter
    corecore