132 research outputs found

    The Empty Chair Appointment

    Get PDF
    The objective was to test an intervention to reduce failed rates for psychiatric appointments. We collected data for this study of the characteristics of patients who missed appointments from March 2011 through September 2012. A phone triage assessment intervention was implemented to address chronic first-time failed attendance appointments (N = 78). The main reason for failed appointments was transportation difficulties. The first-time appointment show rate increased after implementing an assessment intervention. Phone assessment intervention was practical and may improve nonattendance for psychiatric appointments. The discussion reflects speculations about causes and possible measures to make services more accessible

    First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    Get PDF
    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.Comment: 6 pages including 6 figures; e-mail: [email protected]

    The role of the disulfide bond in the interaction of islet amyloid polypeptide with membranes

    Get PDF
    Human islet amyloid polypeptide (hIAPP) forms amyloid fibrils in pancreatic islets of patients with type 2 diabetes mellitus. It has been suggested that the N-terminal part, which contains a conserved intramolecular disulfide bond between residues 2 and 7, interacts with membranes, ultimately leading to membrane damage and β-cell death. Here, we used variants of the hIAPP1–19 fragment and model membranes of phosphatidylcholine and phosphatidylserine (7:3, molar ratio) to examine the role of this disulfide in membrane interactions. We found that the disulfide bond has a minor effect on membrane insertion properties and peptide conformational behavior, as studied by monolayer techniques, 2H NMR, ThT-fluorescence, membrane leakage, and CD spectroscopy. The results suggest that the disulfide bond does not play a significant role in hIAPP–membrane interactions. Hence, the fact that this bond is conserved is most likely related exclusively to the biological activity of IAPP as a hormone

    The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in <it>SFTPC</it>, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects.</p> <p>Methods</p> <p>SP-C<sup>A116D </sup>was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide.</p> <p>Results</p> <p>Stable expression of SP-C<sup>A116D </sup>in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-C<sup>A116D </sup>expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC) and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-C<sup>A116D </sup>cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4<sup>+ </sup>lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-C<sup>A116D </sup>on neighboring cells in the alveolar space.</p> <p>Conclusions</p> <p>We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy. Our findings shed new light on the pathomechanisms underlying SP-C deficiency associated ILD and provide insight into the mechanisms by which drugs currently used in ILD therapy act.</p

    Point Mutations in Aβ Result in the Formation of Distinct Polymorphic Aggregates in the Presence of Lipid Bilayers

    Get PDF
    A hallmark of Alzheimer's disease (AD) is the rearrangement of the β-amyloid (Aβ) peptide to a non-native conformation that promotes the formation of toxic, nanoscale aggregates. Recent studies have pointed to the role of sample preparation in creating polymorphic fibrillar species. One of many potential pathways for Aβ toxicity may be modulation of lipid membrane function on cellular surfaces. There are several mutations clustered around the central hydrophobic core of Aβ near the α-secretase cleavage site (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These point mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy (CAA) to typical Alzheimer's disease pathology with plaques and tangles. We investigated how these point mutations alter Aβ aggregation in the presence of supported lipid membranes comprised of total brain lipid extract. Brain lipid extract bilayers were used as a physiologically relevant model of a neuronal cell surface. Intact lipid bilayers were exposed to predominantly monomeric preparations of Wild Type or different mutant forms of Aβ, and atomic force microscopy was used to monitor aggregate formation and morphology as well as bilayer integrity over a 12 hour period. The goal of this study was to determine how point mutations in Aβ, which alter peptide charge and hydrophobic character, influence interactions between Aβ and the lipid surface. While fibril morphology did not appear to be significantly altered when mutants were prepped similarly and incubated under free solution conditions, aggregation in the lipid membranes resulted in a variety of polymorphic aggregates in a mutation dependent manner. The mutant peptides also had a variable ability to disrupt bilayer integrity

    Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes.

    Get PDF
    Alzheimer's disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-β peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer's disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aβ42 (the 42-residue form of the amyloid-β peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aβ42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aβ42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aβ42 aggregation, thereby helping rationalize the link between Alzheimer's disease and the impairment of cholesterol homeostasis

    The Empty Chair Appointment

    No full text
    corecore