75 research outputs found

    Block-separable linking constraints in augmented Lagrangian coordination

    Get PDF
    Augmented Lagrangian coordination (ALC) is a provably convergent coordination method for multidisciplinary design optimization (MDO) that is able to treat both linking variables and linking functions (i.e. system-wide objectives and constraints). Contrary to quasi-separable problems with only linking variables, the presence of linking functions may hinder the parallel solution of subproblems and the use of the efficient alternating directions method of multipliers. We show that this unfortunate situation is not the case for MDO problems with block-separable linking constraints. We derive a centralized formulation of ALC for block-separable constraints, which does allow parallel solution of subproblems. Similarly, we derive a distributed coordination variant for which subproblems cannot be solved in parallel, but that still enables the use of the alternating direction method of multipliers. The approach can also be used for other existing MDO coordination strategies such that they can include block-separable linking constraints

    Extension of Analytical Target Cascading Using Augmented Lagrangian Coordination for Multidisciplinary Design Optimization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77083/1/AIAA-2008-5843-768.pd

    Design optimization of multibody systems by sequential approximation

    Get PDF
    Abstract. Design optimization of multibody systems is usually established by a direct coupling of multibody system analysis and mathematical programming algorithms. However, a direct coupling is hindered by the transient and computationally complex behavior of many multibody systems. In structural optimization often approximation concepts are used instead to interface numerical analysis and optimization. This paper shows that such an approach is valuable for the optimization of multibody systems as well. A design optimization tool has been developed for multibody systems that generates a sequence of approximate optimization problems. The approach is illustrated by three examples: an impact absorber, a slider-crank mechanism, and a stress-constrained four-bar mechanism. Furthermore, the consequences for an accurate and efficient accompanying design sensitivity analysis are discussed

    Coordination Specification for Distributed Optimal System Design Using the Chi Language

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76202/1/AIAA-2002-5410-847.pd

    Coordination Specification of the Analytical Target Cascading Process using the Chi Language

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76587/1/AIAA-2002-5637-610.pd

    A micro-accelerometer MDO benchmark problem

    Get PDF
    Many optimization and coordination methods for multidisciplinary design optimization (MDO) have been proposed in the last three decades. Suitable MDO benchmark problems for testing and comparing these methods are few however. This article presents a new MDO benchmark problem based on the design optimization of an ADXL150 type lateral capacitive micro-accelerometer. The behavioral models describe structural and dynamic effects, as well as electrostatic and amplification circuit contributions. Models for important performance indicators such as sensitivity, range, noise, and footprint area are presented. Geometric and functional constraints are included in these models to enforce proper functioning of the device. The developed models are analytical, and therefore highly suitable for benchmark and educational purposes. Four different problem decompositions are suggested for four design cases, each of which can be used for testing MDO coordination algorithms. As a reference, results for an all-in-one implementation, and a number of augmented Lagrangian coordination algorithms are given. © 2009 The Author(s)

    Global economic burden of unmet surgical need for appendicitis

    Get PDF
    Background: There is a substantial gap in provision of adequate surgical care in many low-and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods: Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results: Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion: For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially
    • …
    corecore