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Abstract. Design optimization of multibody systems is usually established by a direct coupling of
multibody system analysis and mathematical programming algorithms. However, a direct coupling
is hindered by the transient and computationally complex behavior of many multibody systems. In
structural optimization often approximation concepts are used instead to interface numerical analy-
sis and optimization. This paper shows that such an approach is valuable for the optimization of
multibody systems as well. A design optimization tool has been developed for multibody systems
that generates a sequence of approximate optimization problems. The approach is illustrated by three
examples: an impact absorber, a slider-crank mechanism, and a stress-constrained four-bar mecha-
nism. Furthermore, the consequences for an accurate and efficient accompanying design sensitivity
analysis are discussed.

Key words: design optimization, approximation concept, design sensitivity analysis, transient dy-
namic behavior, mathematical programming.

1. Introduction

Multibody system analysis packages can automatically generate and solve the al-
gebraic relations and differential equations of motion of user-defined mechanical
systems. Many packages, however, do not include design optimization routines. To
provide optimization facilities, the multibody analysis code has to be extended by
a suitable optimization strategy. The question is then how numerical analysis and
optimization can be effectively combined to a general multibody design tool. Im-
portant aspects are the mathematical formulation of the optimization problem, the
type of optimization algorithm to solve this problem, and the actual implementa-
tion. Altogether, they should guarantee a reliable and efficient design optimization
for a wide range of multibody systems.

The multibody system optimum design problem is defined by design variables,
an objective function, and constraints. The design variables arise from the bod-
ies, joints, and force elements present in the multibody system. Examples are
the lengths of links, the sliding angles of translational joints, and the stiffness
and damping coefficients in spring-damper elements. The objective function and
constraints are usually determined by the transient responses following from the
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numerical multibody analysis. Common responses are displacements, velocities,
and accelerations, as well as induced forces and moments.

In literature on optimization of multibody systems usually a sensitivity-
based optimization strategy is applied to a multibody system of fixed topology.
Sensitivity-based optimization algorithms have proven to be very effective for
smooth problems with large numbers of design variables and constraints. Several
successful applications have been reported for planar linkage design [1]. Many
have anad hoccharacter and are concentrated on a specific type of mechanism.
The multibody systems approach, however, requires the optimization to work in a
more general framework, for both kinematics and dynamics.

Several authors have developed accurate and efficient design sensitivity meth-
ods that they consider as the missing link between multibody analysis and opti-
mization. For kinematically driven systems Sohoni and Haug [2] were one of the
first to computer-generate the governing equations for both analysis and sensitivity
analysis. Dynamics were included by Haug et al. [3]. They studied the design sen-
sitivity analysis of large-scale constrained dynamic systems. Ashrafiuon and Mani
[4] proposed to generate the equations for both analysis and sensitivity analysis
symbolically instead of numerically. Starting from symbolic formalisms, Bestle
[5] gave an extensive description of analysis, sensitivity analysis, and optimization
of multibody systems.

Nevertheless, the application of optimization methods to dynamic system de-
sign is lagging behind [6]. Most references start from a direct coupling of the
analysis and design sensitivity analysis routines with the selected mathematical
programming algorithm. However, this direct coupling is hindered by the compu-
tational complexity of many multibody systems. Optimization algorithms usually
need a lot of objective function and constraint evaluations, whereas the computa-
tional cost of large-scale multibody system analysis is often high. Furthermore, the
direct coupling yields a black-box optimization. The user is hardly able to control
the optimization process, and cannot aid with engineering experience. Both Haug
et al. [7] and Erdman [8] stress the importance of an interactive computer aided
design tool for a successful design optimization.

This paper proposes to couple the multibody analysis and optimization algo-
rithm by approximation concepts. The basic idea is to generate approximations of
the objective function and constraints in a certain part of the design space, and to
find the optimum point for this approximate optimization problem. The approxi-
mate problem can be easily solved using a mathematical programming algorithm,
without any call to the analysis program. Such an interface is computationally more
convenient than a direct coupling, and enables the design engineer to influence the
optimization process. This approach is commonly employed in structural optimum
design [9], but has hardly been used for the optimization of multibody systems.
Therefore, we have developed a design optimization tool for multibody systems,
starting from a sequence of single-point local approximations of the objective func-
tion and constraints. The effectiveness of the approximate optimization approach
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is demonstrated for three examples: an impact absorber, a slider-crank mechanism,
and a stress-constrained four-bar mechanism with flexible beams.

2. Optimization Problem Formulation

Within the time intervalt ∈ [t0, tf ], the optimization problem is formulated as
follows: find the set of design variable valuesb ∈ <n that will minimize the
objective function

F(b) = F(r(b, t), b, t), t ∈ [t0, tf ] (1)

subject to the inequality constraints

gj (b, t) = gj (r(b, t), b, t) ≤ cj ∀ t ∈ [t0, tf ], j = 1, . . . ,m, (2)

within the constrained design space

bl
i ≤ bi ≤ bu

i , i = 1, . . . , n. (3)

The functions stored in the column vectorr(b, t) represent the transient responses
calculated from the multibody governing equations. So, the kinematic constraints
of the joints and the equations of motion are not included as equality constraints,
but are solved separately to yield the responsesr .

A great variety of design variables, objective functions and constraints can be
defined depending on the specific design application. The above-mentioned for-
mulation covers many different types of optimization problems that may occur for
multibody systems. It includes functional relations that can be response dependent,
response independent, time dependent or time independent. Usually, the time-
dependent multibody responses play a central role. Objective function (1) often
contains a max-value or integral operation on the time domain of, for example,
a displacement or an acceleration. The constraints (2) usually are parametric of
nature, i.e., they have to be satisfied for a complete interval of time points[t0, tf ].
They include constraints such as displacements that may never surpass predefined
bounds, or bending stresses that are constrained to a maximum value.

Mathematical programming algorithms generally cannot deal directly with
parametric constraints like:

g(b, t) ≤ c ∀ t ∈ [t0, tf ]. (4)

Such a constraint has to be reformulated in order to remove the time dependence.
The most straightforward way is to simply discretize the time interval intont time
points. Then, the original constraint (4) is replaced bynt constraints:

gp(b) = g(b, t)

∣∣∣
t=tp

≤ c, tp ∈ [t0, tf ], p = 1, . . . , nt . (5)
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The time point distribution has to be sufficiently dense to avoid large constraint
violations between two adjacent time points. As a consequence of the discretiza-
tion, time-dependent constraints can greatly increase the number of constraints,
and thereby the costs of optimization [10].

Several equivalent constraint formulations have been proposed to remove the
time dependence without increasing the number of constraints. In some references
the time-dependent constraint (4) is replaced by an integral constraint function
similar to

g(b) = 1

tf − t0

tf∫
t0

max{g(b, t), c} dt ≤ c. (6)

Constraint (6) will be satisfied as long asg(b, t) is smaller than or equal to the
constraint boundc in the entire interval[t0, tf ]. Whenever a violation occurs in be-
tweent0 andtf , the integral constraint will be violated as well, which means that the
final optimum solution is not affected by the reformulation. Hsieh and Arora [11]
stated, however, that from an optimization theory point of view, constraints (4) and
(6) are different. This can be understood by noticing that an equivalent integrated
constraint

ge(b) =
tf∫

t0

f (g(b, t)) dt (7)

represents the behavior of the time-dependent constraintg(b, t) on the complete
time domain[t0, tf ] by a single constraint valuege(b). Information is lost and
as a consequence, equivalent constraints tend to blur design trends [10]. Due to
the max-value operator, the gradients of constraint (6) vanish at the point where
it becomes active [12]. Numerical difficulties during convergence may therefore
occur.

Both Grandhi et al. [13] and Hsieh and Arora [11] preferred to replace the
original constraint (4) by critical time point constraints:

gp(b) = g(b, t)

∣∣∣
t=tmp

≤ c, tmp ∈ [t0, tf ], p = 1, . . . , nmt . (8)

Instead of a complete time discretization (5), they monitored the local maxima and
the boundary maxima att0 andtf of the time-dependent constraint functions. Part
of these maxima will act as constraints in the optimization problem. Hsieh and
Arora [11] only retained the violated critical time points in the active set, where
Grandhi et al. [13] used a cutoff level to mark the important maxima. The time
points for which the maxima occur depend on the design variable values

tmp = tmp(b), p = 1, . . . , nmt(b), (9)
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and may shift during the optimization process. This drift requires the critical time
points to be frequently updated as the optimization progresses, for example after
every iteration.

3. Sequential Approximate Optimization

Local approximations of the objective function and constraints are based on func-
tion values and derivative values with respect to the design variables in a single
point of the design space. Examples are linear or reciprocal approximations. Usu-
ally, these approximations are only valid in the vicinity of this design point.
Therefore, a search subregion is defined in which the approximate optimization
problem is solved. A sequence of approximate optimization cycles has to be per-
formed to reach the final optimum solution. Local approximation concepts are very
popular, because large numbers of design variables and constraints can be handled
without great difficulty. For multibody systems this is an important advantage,
since many constraints may occur, especially if time discretization is used to deal
with time-dependent constraints. Moreover, efficient and accurate design sensitiv-
ity analysis methods for multibody systems have shown major progress during the
last decade (see Section 5). Both aspects indicate that local approximation concepts
can be effectively used for the optimization of multibody systems.

The approximate optimization problem of theq-th cycle is defined as: minimize
the approximate objective function

F̃ (q)(b) = F(r̃ (q)(b, tp), b, tp), tp ∈ [t0, tf ] (10)

subject to the approximate constraints

g̃
(q)

j (b, tp) = gj (r̃ (q)(b, tp), b, tp) ≤ cj

∀ tp ∈ [t0, tf ], j = 1, . . . ,m, p = 1, . . . , n
(q)
t (11)

within the search subregion

sl
i

(q) ≤ bi ≤ su
i

(q)
, i = 1, . . . , n. (12)

Time discretization is used to deal with the time-dependent constraints. Thus, the
approximate optimization problem has been reduced to the standard form that can
be iteratively solved by a mathematical programming algorithm. So, the term cycle
is used for the sequence of approximations, whereas the term iteration applies to
the mathematical programming algorithm.

The framework of the approximate optimization problem is depicted in Fig-
ure 1. Herein, two types of objective function and constraints are distinguished:
objective function and constraints are either completely explicitly known resulting
in a direct computation fromb, or are related to the approximate responsesr̃ . In
the latter case, the relationship between the objective function and constraints on
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Figure 1. Framework of the approximate optimization problem.

the one hand, and the multibody responses on the other hand, is supposed to be
explicitly known or easily calculable. The approximate responsesr̃ are treated as
intermediate response quantities that are linearly approximated from the multibody
responsesr and their derivatives with respect to intermediate design variablesbI :

r̃h(bI
h, tp) = rh(bI

0h, tp)+
n∑

k=1

(bI
hk − bI

0hk)

(
∂rh

∂bI
hk

)
bI

0h
,tp

. (13)

The relationship between intermediate design variablesbI and design variablesb
is supposed to be explicitly known. Each response functionrh may have its own
intermediate design variablesbI

h(b).
The introduction of intermediate design variables and intermediate response

quantities aims at creating a high quality approximation that yields an efficient and
reliable optimization process [14]. The key idea is to improve an approximation of
objective function or constraint by incorporating nonlinear behavior that is explic-
itly known or physically present. Intermediate design variables and intermediate
response quantities are commonly employed in structural optimization (see, e.g.,
[9, 14]). The basic principle is not restricted to any specific area of application
whatsoever. For multibody systems at least the same potential is present.

4. Design Optimization Tool

In the current research a design optimization tool has been developed based on
local approximations. It has been especially designed for multibody systems and
covers time-dependent constraints. The main program structure originates from
[14] and is described in further detail in [15]. The optimization process starts
with the analysis of an initially proposed design, followed by an evaluation of
all constraint functions (constraint screening). Approximation models are gener-
ated only for the critical and potentially critical constraints. For these constraints,
design sensitivities are calculated. The approximate optimization problem is built,
and the region of validity is bounded by so-called move limits. Within this search
subregion, the approximate problem is iteratively solved by an optimizer. At the
calculated optimum a new cycle can be started.

The approximate optimization problem has to be solved by an appropriate
mathematical programming algorithm. When intermediate design variables and
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intermediate response quantities are used, usually a smooth but nonlinear program-
ming problem is obtained. To solve it, we use the SQP algorithm of the NAG library
[16]. Since only a limited part of the design space is considered, the approximate
optimization problem will often have only one optimum solution. However, the
approximate optimization problem is not guaranteed to be convex, and therefore
more than one local optimum solution may occur. In [17] a global optimizer is
proposed for the solution of the approximate optimization problem to yield a glob-
ally convergent optimization strategy. For specific types of intermediate design
variables convexity can be proved, and in that case an optimizer can be selected
that utilizes this quality of the approximation. Well-known examples are convex
linearization [18] and the method of moving asymptotes [19, 20].

The constraint screening tries to identify the important constraints in the opti-
mization problem. Constraints that are not critical or potentially critical at the cycle
start designb(q)

0 are removed. This can greatly reduce the number of constraints
in the approximate optimization problem, and thereby the cost of the numerical
optimization. Additionally, design sensitivity information is only required for the
retained critical and potentially critical constraints. This gives the opportunity to
reduce the cost of design sensitivity analysis (see Section 5).

Great potential exists for constraint deletion if time-dependent constraints are
replaced by time point constraints. All constraints can be removed whose values
at b(q)

0 are smaller than, e.g., 70% of the constraint bound. Furthermore, for each
local maximum of the constraintg(b, t), only a few time point constraintsgp(b, tp)

near the maximum have to be retained. The developed optimization tool allows the
user to define whether constraints below a prescribed bound are removed, and how
many time points are considered near local maxima, and initial and final time. In
the following examples, usually two before and two after the maxima above 70% of
the constraint bound are selected. Multiple time points at a local maximum instead
of a single point are selected to avoid oscillations due to the shift of constraint
maxima. This shift may yield curved constraint functions which often cannot be
predicted by a single time point constraint, unless a conservative one. Neighboring
time point approximations can solve this problem (see Section 6.1).

For each optimization cycle, the quality of the approximations is checked by
comparing the approximate objective and constraint values for the newly proposed
design with the corresponding multibody analysis values. Differences between the
approximated and calculated values are measures for the quality of the gener-
ated approximation. So, after theq-th cycle has been completed, the following
approximation error is calculated for the objective function

E
(q)

f =
∣∣∣∣∣ F̃ (q)(b(q)

∗ )− F(b(q)
∗ )

F (b(q)∗ )

∣∣∣∣∣× 100%, (14)
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whereb(q)
∗ is the proposed optimum design computed from the approximate opti-

mization problem of theq-th cycle. The maximum constraint approximation error
is given by

E(q)
g = max

j=1,...,m
e
(q)

j (15)

with

e
(q)

j =


∣∣∣∣ g̃(q)

j (b(q)∗ )−gj (b(q)∗ )

gj (b(q)∗ )

∣∣∣∣× 100% ifgj is time independent,

max
p=1,...,n

(q)
t

∣∣∣∣ g̃(q)

j (b(q)∗ ,tp)−gj (b
(q)∗ ,tp)

gj (b(q)∗ ,tp)

∣∣∣∣× 100% ifgj is time dependent.
(16)

Many of the (time point) constraints will not contribute to this errorE
(q)
g since they

have been removed from the approximate optimization problem after the constraint
screening. In the same way the maximum constraint violation is calculated:

V (q) = max
j=1,...,m

v
(q)

j (17)

with:

v
(q)

j =


gj (b(q)∗ )−cj

cj
× 100% ifgj is time independent,

max
p=1,...,n

(q)
t

gj (b(q)∗ ,tp)−cj

cj
× 100% ifgj is time dependent.

(18)

Both the approximation errors and the constraint violations are used to determine
the size of the search subregion at the start of each new cycle. Poor approximations
need the support of the move limit strategy during the optimization much more than
high quality approximations. Therefore, a good choice of the search subregion is
important for a good convergence of the optimization process. Details about the
implemented move limit strategy can be found in [15].

5. Design Sensitivity Analysis

Local approximation concepts require gradient information. For each new approxi-
mate optimization cycle, a design sensitivity analysis has to provide the derivatives
of the multibody responses with respect to the design variables. Finite differenc-
ing is probably the simplest method to obtain the design sensitivities, but it is
computationally expensive and suffers from numerical inaccuracies [21]. A better
approach is to derive the governing equations of the design sensitivities. A sub-
stantial amount of literature is available on this subject, see [15] for an overview.
The direct and the adjoint method are briefly outlined below to see why direct
differentiation is more suited for the approximate optimization process defined
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in the previous sections than the adjoint method. For brevity, this is only shown
for pure ordinary differential equations of motion, but for differential algebraic
equations the same may be concluded.

Consider a multibody system that is made up of rigid bodies in tree structure
(no closed loops). Then the equations of motion can be written as a set of ordinary
differential equations:

M(q, b)q̈ = QA(q, q̇, b, t), q(t0) = q0, q̇(t0) = q̇0. (19)

Herein, generalized coordinatesq, mass matrixM , generalized forcesQA, and
initial conditions for the stateq(t0) and q̇(t0) can be identified. The column of
generalized forces includes externally applied forces and torques as well as forces
due to gyroscopic and Coriolis effects. For simplicity, constant initial conditions
are considered, although for some applications they may explicitly or implicitly
depend on the design variables (see, e.g., [21] where the sensitivity equations of
tree-type multibody systems are developed in a more general form). The set of
second-order equations (19) can be rewritten in first-order form which yields for
holonomic kinematic couplings:

ẏ = z, y(t0) = y0, (20)

M(y, b)ż= QA(y, z, b, t), z(t0) = z0. (21)

The newly introduced generalized positionsy and velocitiesz are equal toq andq̇,
respectively.

Equations (20) and (21) are differentiated with respect to a design variableb to
obtain

dẏ
db
= dz

db
, (22)

M
dż
db
= − [(Mż)y −QA

y

] dy
db
+QA

z
dz
db
− (M bż−QA

b

)
(23)

with initial conditions

dy
db

(t0) = 0, (24)

dz
db

(t0) = 0. (25)

The direct method computes(dy/db)(t) and(dz/db)(t) for each design variable
b ∈ b. Subscripty andb denote partial differentiation with respect toy andb,
respectively.
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The adjoint variable approach starts from a responser that is an integral
function of the generalized positions, velocities and accelerations:

r =
tf∫

t0

p(y, z, ż, b, t) dt. (26)

Differentiation of Equation (26) gives

dr

db
=

tf∫
t0

(
py

dy
db
+ pz

dz
db
+ pż

dż
db
+ pb

)
dt. (27)

The adjoint method avoids to explicitly calculate sensitivities dy/db, dz/db, and
dż/db. To accomplish this, one may apply the following procedure that originates
from the Lagrange Multiplier Theorem. Firstly, multiply Equation (22) by adjoint
variablesµT (t), and integrate by parts. Do the same for Equation (23) using adjoint
variablesζ (t). Furthermore, take Equation (23) again multiplied by another set of
adjoint variablesξ(t) without integration by parts. Add these expressions to dr/db

in Equation (27), rearrange, and select the adjoint variables such that the terms with
dy/db, dz/db and ḋz/db vanish. In order to eliminate these state sensitivities, the
adjoint variables should satisfy

µ̇ = [(Mż)y −QA
y

]T
(ζ + ξ)− pT

y , (28)

M ζ̇ = −µ− Ṁζ −QA
z

T
(ζ + ξ)− pT

z , (29)

with boundary conditions

µ(tf ) = 0, (30)

ζ (tf ) = 0, (31)

where symmetry of the mass matrix is used. Herein, the ‘intermediate’ adjoint
variablesξ follow from

Mξ = pT
ż . (32)

The end conditions in Equations (30) and (31) require that the first-order differen-
tial equations (28) and (29) are integratedbackwardin time. Finally, Equation (27)
becomes

dr

db
=

tf∫
t0

[
pb −

(
ζ T + ξT

) (
M bż−QA

b

)]
dt. (33)
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The sensitivity equations show that the computational cost of the direct method
is proportional to the number of design variables, whereas the computational cost
of the adjoint method is directly related to the number of response sensitivities
that have to be calculated. The adjoint method is often more efficient if sensi-
tivities are needed just for a small number of responses in combination with a
large number of design variables and multiple load cases. This means that either
equivalent integrated constraints such as (7) should be used, or critical time point
constraints (8) using a constraint screening that includes only very few time points
in the optimization. This is in contradiction to the constraint screening proposed
in the previous section where multiple time points near local maxima are used
to avoid oscillations for approximations that lack correct curvature. Possibly, an
approximation concept with adjustable conservativeness may be able to overcome
this difficulty.

In some cases the direct method is more suited in combination with the ap-
plication of intermediate response variables than the adjoint method. Suppose we
have an objective function that has integral form (26) with a nonlinear function
p of the state variables, such as the comfort criterion (42) of the impact absorber
example. If we would like to include the nonlinear behavior ofp in the approxi-
mation of the objective function, then we have to approximate the statesy, z, and
ż, and compute dy/db, dz/db, and ḋz/db on the time interval[t0, tf ]. The direct
method computes exactly these sensitivities. The adjoint method, however, uses
integral (26) to directly compute the sensitivities of the objective function. But then
we cannot benefit anymore from the intermediate response variables to improve the
approximations.

6. Examples

6.1. IMPACT ABSORBER

An impact absorber is modeled as a single degree of freedom system with a con-
stant massm of 1 kg, a linear springk and a linear damperc (Figure 2). It is a
simplified version of the nonlinear impact absorber of Afimawala and Mayne [22].
At time t = 0 s, the initial mass position and velocity arey(0) = 0 m, and
ẏ(0) = 1 ms−1, respectively. Starting from the equation of motion and the initial
conditions, the mass position as a function of time can be solved analytically:

y(k, c, t) =



e−t (c/2)√
k−(c/2)2

sin(t
√

k − (c/2)2) if 0 ≤ (c/2)√
k

< 1,

te−t
√

k if (c/2)√
k
= 1,

e−t (c/2)

2
√

(c/2)2−k

[
et
√

(c/2)2−k − e−t
√

(c/2)2−k
]

if (c/2)√
k

> 1.

(34)
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Figure 2. Impact absorber.
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Figure 3. Optimization problem of the impact absorber for the maximum acceleration
objective function. The optimum design is marked with◦.

The optimum design problem is to find the stiffness coefficientb1 = k and the
damping coefficientb2 = c that will minimize the maximum acceleration

F(b) = max
t∈[0,12]

|ÿ(b1, b2, t)| (35)

subject to the displacement constraint

g(b, t) = |y(b1, b2, t)| ≤ 1 ∀ t ∈ [0, 12], (36)

within the design space 0< b1 < 1 Nm−1 and 0< b2 < 1 Nsm−1. A time period of
12 s includes all important response maxima. In Figure 3 the optimization problem
is visualized. The hatched line represents the displacement constraint bound, and
the dotted lines represent contour lines of the maximum acceleration. The feasible
region is in the upper right part of the design space. A single optimum solution
is present, determined by the curvature of the maximum acceleration. For com-
putational convenience the problem is reformulated: minimize the artificial design
variable

F(b) = b3 (37)
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Figure 4. Time point constraints of the impact absorber.

subject to the acceleration and displacement constraints

g1(b, t) = ÿ(b1, b2, t) ≤ b3 ∀ t ∈ [0, 12], (38)

g2(b, t) = −ÿ(b1, b2, t) ≤ b3 ∀ t ∈ [0, 12], (39)

g3(b, t) = y(b1, b2, t) ≤ 1 ∀ t ∈ [0, 12], (40)

g4(b, t) = −y(b1, b2, t) ≤ 1 ∀ t ∈ [0, 12], (41)

with 0 < b1 < 1, 0< b2 < 1, andb3 ≥ 0.
Time discretization is used to deal with the time-dependent constraints. For a

rather coarse discretization at every 0.25 s, the displacement and acceleration time
point constraints of Figure 4 are obtained. The curvature that arises due to the
shift of the response maxima is represented by intersecting time point constraints.
As a result, the optimum is determined by two adjacent time point acceleration
constraints and one time point displacement constraint, or one acceleration and
two displacement constraints. Furthermore, notice the non-convex behavior of the
time point acceleration constraints. This means that the discretized optimization
problem may have multiple adjacent local optima in contrary to the time continuous
problem.

The sequential approximate optimization approach is applied without interme-
diate design variables and responses. Displacements and accelerations are linearly
approximated with respect to the design variables. As a result, the optimization is
a sequential linear programming process. The discretization contains 101 (equally
distributed) time points, and the accuracy is set to 10−5. Starting from the initial
designb1 = 1.0 andb2 = 0.3, and initial move limits of 40% of the design variable
values, the optimum design is found after five cycles using six multibody analyses
and five sensitivity analyses. The optimization history is summarized in Table I.
For each design cycle, values of the design variablesbi , objective functionF , max-
imum constraint violationV , and maximum approximation errorEg are tabulated.
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Table I. Optimization history of the impact absorber with max-value objective function
for two additional time points below and above local maxima.

Cycle active b1 b2 b3 = F Eg [%] V [%]

mvlim [Nm−1] [Nsm−1] [ms−2]

0 (y) 0 1.0000 0.3000 0.8500 0.000 −7.296· 10−1

1 (y) 2 0.6000 0.4200 0.6232 4.703· 10−1 4.043· 10−1

2 (y) 0 0.3411 0.4934 0.5110 1.625· 10−1 8.996· 10−1

3 (y) 0 0.3628 0.4823 0.5203 3.539· 10−3 5.554· 10−4

4 (y) 0 0.3628 0.4823 0.5203 9.055· 10−9 6.510· 10−9

5 (y) 0 0.3628 0.4823 0.5203 0.000 6.510· 10−9

All cycle optima are accepted as starting design of the next cycle, indicated by (y)
in the first column. Move limits (two) are active only during the first design cycle.
Constraints are included at a maximum of 14 time points. Both the maximum error
and constraint violation remain small.

The optimization is restarted, but now only one time point constraint is included
for each local maximum. As a result, 18 cycles are necessary to converge. Always
one of the move limits remains active, and convergence can only be reached by a
repeated reduction of the search subregion. An oscillatory behavior of the design
variable values occurs.

Intermediate response variables can be employed when the maximum accelera-
tion objective function is replaced by a comfort criterion such as:

F(b) = 1

tf − t0

tf∫
t0

ÿ2(b1, b2, t) dt. (42)

Figure 5 shows that the new objective function has a completely different behavior.
The optimum design moves towards the upper left corner of the design space.
Again, displacements and accelerations are linearly approximated, however, the
integral relation between objective function value and acceleration is included in
the approximate optimization problem. Starting fromb1 = 1.0 andb2 = 0.3, the
final optimum design is found after eight cycles using nine multibody analyses
and eight sensitivity analyses (see Table II). During the first four cycles always
one move limit is active. Afterwards, automatic convergence occurs without any
oscillations. When using a direct coupling of the SQP algorithm, 23 analyses and
sensitivity analyses are required [15].
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Figure 5. Optimization problem of the impact absorber for a comfort criterion objective
function. The optimum design is marked with◦.
Table II. Optimization history of the impact absorber with comfort criterion objective
function.

Cycle b1 b2 Ef [%] Eg [%] V [%] F

[Nm−1] [Nsm−1] [m2s−4]

0 (y) 1.000 0.3000 0.000 0.000 −1.938· 101 0.1480

1 (y) 0.8657 0.4200 5.901· 10−1 1.095· 10−1 −2.132· 101 0.1029

2 (y) 0.6596 0.6640 2.225· 100 4.781· 10−1 −2.549· 101 0.06949

3 (y) 0.3958 0.7933 3.909· 100 2.882· 10−1 −2.277· 101 0.05384

4 (y) 0.1847 0.6117 1.352· 101 3.801· 100 5.663· 100 0.03805

5 (y) 0.1052 0.7750 2.494· 10−2 5.378· 10−1 3.192· 10−1 0.03793

6 (y) 0.09856 0.7882 7.365· 10−4 2.286· 10−3 1.472· 10−3 0.03804

7 (y) 0.09850 0.7883 1.168· 10−7 1.0 · 10−7 −1.000· 10−7 0.03804

8 (y) 0.09850 0.7883 0.000 0.000 −1.000· 10−7 0.03804

6.2. SLIDER-CRANK MECHANISM

The mechanism design problem of [23] is used to illustrate that intermediate re-
sponse variables can be employed for kinematic responses as well. A four-bar
slider-crank mechanism has to be designed such that a desired coupler curve is
generated. Figure 6 shows the four-bar mechanism with eight design variablesbi

and the coupler pointP that should generate the desired curve. The prescribed path
and timing of the coupler curve is given in Table III. The desired(xG, yG) positions
of P are tabulated as a function of the crank rotations1γ (k) relative to the starting
angleb8.
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Figure 6. Slider-crank mechanism and coupler curve.

Table III. Path coordinates and prescribed timing.

Pointk 1 2 3 4 5 6 7 8

xG(k) 26 23 20 17 14 10 20 30

yG(k) 16 16 16 16 16 13 7 13

1γ (k) in degrees 0 22 44 66 88 129 221 314

The optimization problem is to minimize the objective function

F(b) =
8∑

k=1

[{xP (1γ (k))− xG(k)}2+ {yP (1γ (k))− yG(k)}2] (43)

subject to the movability constraints

g1(b) = −0.85b2 + b1 + b3− b6 ≤ 0, (44)

g2(b) = −0.85b2 + b1 − b3+ b6 ≤ 0, (45)

and design space bounds 1≤ b1 ≤ 30, 1 ≤ b2 ≤ 30 and 1≤ b4 ≤ 30. The
movability constraints ensure that the linkage can operate for the complete range of
crank rotations. The position of coupler pointP (xP , yP ) follows from the response
variablesx2, y2 andθ2 of body 2, and the design variablesb4 andb7:

xP = x2 + b4 cos(b7+ θ2), (46)

yP = y2 + b4 sin(b7+ θ2). (47)

Usually, the state or response variable values have to be solved numerically from
the governing equations of the multibody system. But for the slider-crank mech-
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Table IV. Optimization history of the slider-crank mechanism.

Cycle active max1bi [%] Ef [%] F

mvlim

0 (y) 0 0.000· 100 0.000· 100 3.486· 103

1 (n) 5 4.000· 101 8.541· 101 1.303· 102

1 (y) 8 2.000· 101 2.870· 101 6.260· 102

2 (y) 7 1.500· 101 2.506· 100 8.500· 101

3 (y) 4 2.000· 101 1.691· 10−1 3.225· 101

4 (y) 4 2.667· 101 6.177· 100 1.455· 101

5 (y) 2 2.000· 101 5.953· 100 5.658· 100

6 (y) 1 2.667· 101 2.263· 100 3.942· 100

7 (y) 1 3.556· 101 4.954· 10−1 3.772· 100

8 (y) 0 1.288· 101 9.316· 10−3 3.746· 100

9 (y) 0 1.085· 100 1.353· 10−4 3.746· 100

10 (y) 0 3.248· 10−2 4.511· 10−7 3.746· 100

anism,x2, y2 andθ2 can be derived analytically as function of the rotation angle
1γ :

x2 = b1 cos(b8+1γ )+ b5, (48)

y2 = b1 sin(b8+1γ )+ b6, (49)

θ2 = arcsin

(
b3− y2

b2

)
. (50)

We assume that responsesx2, y2 andθ2 are not explicitly known and treat them
as intermediate response variables that are linearly approximated with respect to
the design variables. This means that relations (43), (46) and (47) are included in
the approximate optimization problem. The accuracy is again 10−5. A sequence of
ten approximate nonlinear programming problems yields the final optimum solu-
tion, and nearly exactly corresponds with the solution of Gabriele [1]. Gabriele,
however, needed 44 iterations of the SQP algorithm, requiring 803 evaluations of
the objective function (central difference gradients were used). So, the approxi-
mate optimization approach used much less ‘expensive’ multibody analyses and
design sensitivity analyses. Instead, the objective function approximation is quite
frequently evaluated. Due to the analytical example the actual savings in computer
time are not so much present, but become much more apparent for numerically
expensive multibody analyses.

The optimization history is given in Table IV. The first design cycle has to be
repeated with smaller move limits, since the approximation error for the initial
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Figure 7. Stress-constrained four-bar mechanism.

move limit factors (40%) is far too large. Afterwards, a good convergence occurs
with a steady reduction of the number of active move limits. During the last three
cycles no move limits are active anymore and the maximum design variable change
max1bi shows a superlinear decrease. Constraint violations do not occur, since
the movability constraints are explicitly known and included in the approximate
optimization problem. If the optimization is started with move limit factors of 30%,
just eight cycles will be necessary to find the optimum solution. Then, a much
smaller approximation error occurs at the first design cycle.

6.3. STRESS-CONSTRAINED FOUR-BAR MECHANISM

Figure 7 shows a four-bar mechanism consisting of three solid but flexible links,
connected to each other and the ground by revolute joints. The three mobile links
have a constant circular cross section, a Young’s modulus of 6.895 · 1010 Pa, and
a mass densityρ of 2757 kg·m−3. The lengths of the bars arel1 = 0.3048 m,
l2 = 0.9144 m,l3 = 0.762 m, andl4 = 0.9144 m, respectively. The input crank
rotates with a constant angular velocity of 10π s−1. Due to the motion, bending
stresses occur in the mobile links.

Each link is modeled by six beam elements. The multibody analysis package
MECANO [24] is used to compute the bending momentsMk

i in every nodek of
link i as a function of time. The bending stresses can then be calculated from

σ k
i =

4
√

π

A
3/2
i

Mk
i , (51)

whereAi is the cross sectional area of bodyi. A time interval of 0.3 to 0.5 s
is considered which exactly covers one period of steady state motion after the
transient has died away.

The optimization problem is to find the diameters of the mobile linksbi = di ;
(i = 1, 2, 3) that will minimize the total mass

F(b) = ρ(l1A1+ l2A2+ l3A3) (52)
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subject to the stress constraints

σ k
i (b, t) ≤ σa ∀ t ∈ [0.3, 0.5], i = 1, 2, 3, k = 1, . . . , 7, (53)

in the design spacebi ≥ 0 (i = 1, 2, 3) with a maximum bending stress ofσa =
2.758· 107 Pa. The time interval of 0.3 to 0.5 s is discretized into 201 time points.
For the approximate optimization problem, the cross sectional areas are taken as
intermediate design variables:

bI
i = Ai = 1

4
πd2

i , i = 1, 2, 3. (54)

The bending momentsMk
i are used as intermediate response quantities.

MECANO [24] has been coupled with the design optimization tool described in
Section 4. However, MECANO cannot calculate the required design sensitivities.
Therefore, the derivatives with respect to the design variables are computed by
forward finite differencing. The optimization is started from initial design variable
values of 356.8 mm [2], using initial move limits of 40% for the design variable
values. This initial design has a total mass of 546 kg and is far from the maximum
allowed stress. The critical constraint value for the constraint screening is set to
50% (see Section 4).

After 15 cycles, optimum design I of Table V is found. For other optimization
runs with slightly different initial conditions we found optimum design II as well in
accordance with [25]. Apparently multiple local optima are present. These designs
differ from the final design of Sohoni and Haug [2], which is due to the different
method of stress analysis – dynamic instead of kinematic – and the discretization
of the mobile links. In [26] we also studied the stress-constrained four-bar mech-
anism, but did not use intermediate design variables and intermediate response
quantities. About the same number of cycles was needed for convergence. At first
glance, one may therefore conclude that the effect of the intermediate variables and
responses is marginal, but a closer look at the convergence behavior reveals why
still 15 cycles are necessary.

A quite typical optimization history is found (see Table VI). After five opti-
mization cycles a great reduction of the move limits was necessary to keep the
approximation errors at an acceptable level. Along with the decrease of the beam
diameters, the links start to vibrate (see [15] for some plots). Additionally, the
vibration frequency varies as the diameter changes. According to the beam theory,
the frequency of the vibration will decrease if the diameter of a beam becomes
smaller. This effect is indeed observed for the bending stresses of the mobile links.
As a result, the position and the number of local stress maxima in the time interval
[0.3, 0.5] vary. Approximations, however, are built at fixed time points and cannot
predict this dynamic effect. For large steps in the design space, the approxima-
tion errors may rise, and if the errors become too large, a move limit reduction is
necessary.

In order to reduce the contribution of the dynamic behavior, Young’s modulus is
increased to 6.895·1011 Pa (imaginary experiment). With and without intermediate
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Table V. Initial and optimum design of the stress-constrained
four-bar mechanism. Optimum designs I and II have been cal-
culated for the original Young’s modulus of 6.895 · 1010 Pa.
Optimum III corresponds to an increased Young’s modulus of
6.895· 1011 Pa.

b and Initial Optimum design Optimum

F(b) design I II III reported by [2]

d1 [mm] 356.8 38.5 37.3 35.5 36.2

d2 [mm] 356.8 25.2 23.6 23.0 28.1

d3 [mm] 356.8 20.0 19.8 18.0 12.2

F [kg] 546.0 2.89 2.67 2.42 2.69

Table VI. Optimization history of the stress-constrained four-bar mechanism for Young’s
modulus of 6.895· 1010 Pa, using cross sectional areas as intermediate design variables and
bending moments as intermediate response quantities.

Cycle active b1 b2 b3 Eg [%] V [%] F [kg]

mvlim [mm] [mm] [mm]

0 (y) 0 356.8 356.8 356.8 0.00 −7.15 · 101 5.46 · 102

1 (y) 3 214.1 214.1 214.1 0.00 −5.28 · 101 1.97 · 102

2 (y) 3 128.4 128.4 128.4 0.00 −2.12 · 101 7.08 · 101

3 (y) 2 84.7 77.1 77.1 1.83 · 100 −6.11 · 10−1 2.63 · 101

4 (y) 2 52.2 36.0 36.0 2.57 · 101 −6.65 · 100 6.50 · 100

5 (n) 0 42.2 28.8 23.0 1.21 · 102 −2.77 · 100 3.70 · 100

5 (n) 2 44.4 29.0 28.8 6.07 · 101 −1.39 · 100 4.34 · 100

5 (y) 3 48.3 32.4 32.4 2.63 · 101 −4.19 · 100 5.34 · 100

6 (y) 2 45.7 29.9 29.9 7.51 · 100 −2.68 · 100 4.63 · 100

7 (y) 3 43.1 27.0 27.0 1.69 · 101 −6.35 · 100 3.86 · 100

8 (n) 2 40.7 24.3 24.3 4.16 · 101 −3.26 · 100 3.23 · 100

8 (y) 3 41.9 25.6 25.6 1.86 · 101 −4.30 · 100 3.53 · 100

9 (y) 2 40.7 25.2 24.3 9.99 · 100 −1.06 · 100 3.33 · 100

10 (y) 1 39.6 25.1 22.7 1.20 · 101 2.24 · 10−1 3.13 · 100

11 (y) 1 39.1 25.2 21.2 1.40 · 101 2.75 · 10−2 3.00 · 100

12 (y) 1 38.5 25.4 19.8 1.70 · 101 4.45 · 100 2.90 · 100

13 (y) 0 38.5 25.3 20.1 2.28 · 100 −1.87 · 10−1 2.91 · 100

14 (y) 0 38.5 25.2 20.0 2.35 · 10−1 5.05 · 10−2 2.89 · 100

15 (y) 0 38.5 25.2 20.0 1.92 · 10−3 9.09 · 10−4 2.89 · 100
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variables and responses, the optimization process converges towards optimum III
of Table V. With intermediate variables and responses, only eight cycles are nec-
essary with very small approximation errors [15]. Without, 14 cycles result with
somewhat larger approximation errors, but still much better compared with the case
of the original Young’s modulus value. This shows that the intermediate design
variables and intermediate response quantities do yield better approximations, but
that this benefit can be spoiled by the dynamic behavior.

7. Conclusions and Recommendations

Approximation concepts can effectively be applied to design optimization of multi-
body systems. They prove to be a valuable part in a multibody optimum design
tool. Other important elements are an efficient multibody analysis and sensitivity
analysis, a graphical user-interface, a database combined with for example an ex-
pert system, and a control program to manage the complete design process. An
important future step is to put all parts together and build a completely integrated
and interactive design tool. This will put a different complexion on each of the
individual elements.

Intermediate design variables and intermediate response quantities can highly
improve the approximations, and thus enhance the optimization process. For multi-
body systems several intermediate variables and responses can be identified. Their
beneficial effect has been illustrated by the impact absorber, the slider-crank mech-
anism, and the four-bar constrained mechanism example. For the last example,
however, vibrations induced by the motion of the system deteriorated the approx-
imations. Possibly, new intermediate design variables and intermediate response
quantities may be defined that include the change of the vibration frequencies.

The design sensitivity equations can be obtained either by direct differentiation
of the equations of motion, or by the adjoint variable method. If approximate
optimization with time discretization is used, usually the direct method is most
suited. It works effectively in combination with the proposed constraint screening,
and allows the utilization of intermediate design variables and intermediate re-
sponse quantities. The adjoint variable method is preferable if the number of (time
point) responses for which sensitivities are needed is small, the number of design
variables is large, and multiple load cases occur.

Due to the large possible number of design variables, symbolic generation of
sensitivity equations seems to be appropriate. For multibody codes that evaluate the
equations of motion numerically from a library of joint elements, implementation
of the direct and the adjoint method may become an immense programming task. In
that case, an option is to use the semi-analytical method, i.e., to calculate the partial
derivatives with respect to the design variables in the sensitivity equations by finite
differencing which is commonly applied in structural optimization. Another option
is to use automatic differentiation [27, 28], and produce new FORTRAN or C code
at the joint element level for the extra partial derivatives in the sensitivity equations.
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