7,538 research outputs found

    The replica symmetric behavior of the analogical neural network

    Full text link
    In this paper we continue our investigation of the analogical neural network, paying interest to its replica symmetric behavior in the absence of external fields of any type. Bridging the neural network to a bipartite spin-glass, we introduce and apply a new interpolation scheme to its free energy that naturally extends the interpolation via cavity fields or stochastic perturbations to these models. As a result we obtain the free energy of the system as a sum rule, which, at least at the replica symmetric level, can be solved exactly. As a next step we study its related self-consistent equations for the order parameters and their rescaled fluctuations, found to diverge on the same critical line of the standard Amit-Gutfreund-Sompolinsky theory.Comment: 17 page

    Central limit theorem for fluctuations in the high temperature region of the Sherrington-Kirkpatrick spin glass model

    Get PDF
    In a region above the Almeida-Thouless line, where we are able to control the thermodynamic limit of the Sherrington-Kirkpatrick model and to prove replica symmetry, we show that the fluctuations of the overlaps and of the free energy are Gaussian, on the scale N^{-1/2}, for N large. The method we employ is based on the idea, we recently developed, of introducing quadratic coupling between two replicas. The proof makes use of the cavity equations and of concentration of measure inequalities for the free energy.Comment: 18 page

    An Extended Variational Principle for the SK Spin-Glass Model

    Full text link
    The recent proof by F. Guerra that the Parisi ansatz provides a lower bound on the free energy of the SK spin-glass model could have been taken as offering some support to the validity of the purported solution. In this work we present a broader variational principle, in which the lower bound, as well as the actual value, are obtained through an optimization procedure for which ultrametic/hierarchal structures form only a subset of the variational class. The validity of Parisi's ansatz for the SK model is still in question. The new variational principle may be of help in critical review of the issue.Comment: 4 pages, Revtex

    A mean-field monomer-dimer model with attractive interaction. The exact solution

    Full text link
    A mean-field monomer-dimer model which includes an attractive interaction among both monomers and dimers is introduced and its exact solution rigorously derived. The Heilmann-Lieb method for the pure hard-core interacting case is used to compute upper and lower bounds for the pressure. The bounds are shown to coincide in the thermodynamic limit for a suitable choice of the monomer density m. The consistency equation characterising m is studied in the phase space (h, J), where h tunes the monomer potential and J the attractive potential. The critical point and exponents are computed and show that the model is in the mean-field ferromagnetic universality class.Comment: 32 pages, 6 figure

    Mean field dilute ferromagnet I. High temperature and zero temperature behavior

    Full text link
    We study the mean field dilute model of a ferromagnet. We find and prove an expression for the free energy density at high temperature, and at temperature zero. We find the critical line of the model, separating the phase with zero magnetization from the phase with symmetry breaking. We also compute exactly the entropy at temperature zero, which is strictly positive. The physical behavior at temperature zero is very interesting and related to infinite dimensional percolation, and suggests possible behaviors at generic low temperatures. Lastly, we provide a complete solution for the annealed model. Our results hold both for the Poisson and the Bernoulli versions of the model.Comment: 38 page

    General properties of overlap probability distributions in disordered spin systems. Toward Parisi ultrametricity

    Full text link
    For a very general class of probability distributions in disordered Ising spin systems, in the thermodynamical limit, we prove the following property for overlaps among real replicas. Consider the overlaps among s replicas. Add one replica s+1. Then, the overlap q(a,s+1) between one of the first s replicas, let us say a, and the added s+1 is either independent of the former ones, or it is identical to one of the overlaps q(a,b), with b running among the first s replicas, excluding a. Each of these cases has equal probability 1/s.Comment: LaTeX2e, 11 pages. Submitted to Journal of Physics A: Mathematical and General. Also available at http://rerumnatura.zool.su.se/stefano/ms/ghigu.p

    Thermodynamics and Universality for Mean Field Quantum Spin Glasses

    Full text link
    We study aspects of the thermodynamics of quantum versions of spin glasses. By means of the Lie-Trotter formula for exponential sums of operators, we adapt methods used to analyze classical spin glass models to answer analogous questions about quantum models.Comment: 17 page

    Structural Properties of the Disordered Spherical and other Mean Field Spin Models

    Full text link
    We extend the approach of Aizenman, Sims and Starr for the SK-type models to their spherical versions. Such an extension has already been performed for diluted spin glasses. The factorization property of the optimal structures found by Guerra for the SK model, which holds for diluted models as well, is verified also in the case of spherical systems, with the due modifications. Hence we show that there are some common structural features in various mean field spin models. These similarities seem to be quite paradigmatic, and we summarize the various techniques typically used to prove the structural analogies and to tackle the computation of the free energy per spin in the thermodynamic limit.Comment: 24 page

    Local Spin Glass Order in 1D

    Get PDF
    We study the behavior of one dimensional Kac spin glasses as function of the interaction range. We verify by Montecarlo numerical simulations the crossover from local mean field behavior to global paramagnetism. We investigate the behavior of correlations and find that in the low temperature phase correlations grow at a faster rate then the interaction range. We completely characterize the growth of correlations in the vicinity of the mean-field critical region
    • …
    corecore