4,090 research outputs found
Electrolytic hydrogen production: An analysis and review
The thermodynamics of water electrolysis cells is presented, followed by a review of current and future technology of commercial cells. The irreversibilities involved are analyzed and the resulting equations assembled into a computer simulation model of electrolysis cell efficiency. The model is tested by comparing predictions based on the model to actual commercial cell performance, and a parametric investigation of operating conditions is performed. Finally, the simulation model is applied to a study of electrolysis cell dynamics through consideration of an ideal pulsed electrolyzer
The Contribution of the Smectic-Nematic Interface to the Surface Energy
The contribution of the smectic-nematic interface to the surface energy of a
nematic liquid crystal sample is analyzed. By means of a simple model it is
shown that the surface energy depends on the thickness of the region over which
the transition smectic-nematic takes place. For perfectly flat substrates this
thickness is of the order of the correlation length entering in the transition.
An estimate of this contribution shows that it is greater than the one arising
from the nematic-substrate interaction. Moreover, it is also shown that the
surface energy determined in this way presents a non-monotonic behavior with
the temperature.Comment: 10 pages, revte
Nanometric pitch in modulated structures of twist-bend nematic liquid crystals
The extended Frank elastic energy density is used to investigate the
existence of a stable periodically modulate structure that appears as a ground
state exhibiting a twist-bend molecular arrangement. For an unbounded sample,
we show that the twist-bend nematic phase is characterized by a
heliconical structure with a pitch in the nano-metric range, in agreement with
experimental results. For a sample of finite thickness, we show that the wave
vector of the stable periodic structure depends not only on the elastic
parameters but also on the anchoring energy, easy axis direction, and the
thickness of the sample.Comment: 11 page
The 3D numerical simulation of near-source ground motion during the Marsica earthquake, central Italy, 100 years later
In this paper we show 3D physics-based numerical simulations of ground motion during one of the most devastating earthquakes in the recent Italian history, occurred on Jan 13, 1915, Marsica, Central Italy. The results provide a realistic estimate of the earthquake ground motion and fit reasonably well both the geodetic measurements of permanent ground settlement, and the observed macroseismic distribution of damage. In addition, these results provide a very useful benchmark to improve the current knowledge of near-source earthquake ground motion, including evaluation of the best distance metrics to describe the spatial variability of the peak values of ground motion, the relative importance of fault normal vs fault parallel components, the conditions under which vertical ground motion may prevail, as well as the adequacy of 1D vs 3D modelling of site amplification effects
1D Seismic Response Analysis of Soil-building Systems Including Failure Shear Mechanisms
Modelling of soil shear rupture due to an earthquake is not generally implemented in the common codes for 1D seismic response analysis. It requires the use of advanced plasticity-based constitutive models of soil, that are often neglected in practice. A good balance between simplicity and reliability can be achieved with methods based on simplified formulations of the mathematical equations and of the constitutive models. The paper presents a computer code based on this philosophy conceived, addressed and optimised to reliably model both the 'transient' seismic response ('stick' mode) and the permanent deformation mechanisms accounting for the coupled effects of deformability and strength ('slip' mode). The code can be adopted to evaluate the seismic performance of different geotechnical systems that can be reasonably approximated to a 1D problem. In the paper, the code is applied to model a soft-storey failure occurred in a framed structure heavily damaged during a strong-motion earthquake
- …