2,668 research outputs found

    ATLBS: the Australia Telescope Low-brightness Survey

    Get PDF
    We present a radio survey carried out with the Australia Telescope Compact Array. A motivation for the survey was to make a complete inventory of the diffuse emission components as a step towards a study of the cosmic evolution in radio source structure and the contribution from radio-mode feedback on galaxy evolution. The Australia Telescope low-brightness survey (ATLBS) at 1388 MHz covers 8.42 sq deg of the sky in an observing mode designed to yield images with exceptional surface brightness sensitivity and low confusion. The ATLBS radio images, made with 0.08 mJy/beam rms noise and 50" beam, detect a total of 1094 sources with peak flux exceeding 0.4 mJy/beam. The ATLBS source counts were corrected for blending, noise bias, resolution, and primary beam attenuation; the normalized differential source counts are consistent with no upturn down to 0.6 mJy. The percentage integrated polarization Pi_0 was computed after corrections for the polarization bias in integrated polarized intensity; Pi_0 shows an increasing trend with decreasing flux density. Simultaneous visibility measurements made with longer baselines yielded images, with 5" beam, of compact components in sources detected in the survey. The observations provide a measurement of the complexity and diffuse emission associated with mJy and sub-mJy radio sources. 10% of the ATLBS sources have more than half of their flux density in extended emission and the fractional flux in diffuse components does not appear to vary with flux density, although the percentage of sources that have complex structure increases with flux density. The observations are consistent with a transition in the nature of extended radio sources from FR-II radio source morphology, which dominates the mJy population, to FR-I structure at sub-mJy flux density. (Abridged)Comment: 18 pages, 8 figues, 6 tables, accepted for publication in MNRA

    Coherence-enhanced imaging of a degenerate Bose gas

    Full text link
    We present coherence-enhanced imaging, an in situ technique that uses Raman superradiance to probe the spatial coherence properties of an ultracold gas. Applying this method, we obtain a spatially resolved measurement of the condensate number and more generally, of the first-order spatial correlation function in a gas of 87^{87}Rb atoms. We observe the enhanced decay of propagating spin gratings in high density regions of a Bose condensate, a decay we ascribe to collective, non-linear atom-atom scattering. Further, we directly observe spatial inhomogeneities that arise generally in the course of extended sample superradiance.Comment: 4 pages, 4 figure

    HI in four star-forming low-luminosity E/S0 and S0 galaxies

    Full text link
    We present HI data cubes of four low-luminosity early-type galaxies which are currently forming stars. These galaxies have absolute magnitudes in the range M_B=-17.9 to -19.9 (H_o=50 km/s/Mpc). Their HI masses range between a few times 10^8 and a few times 10^9 M_sun and the corresponding values for M_HI/L_B are between 0.07 and 0.42, so these systems are HI rich for their morphological type. In all four galaxies, the HI is strongly centrally concentrated with high central HI surface densities, in contrast to what is typically observed in more luminous early-type galaxies. In two galaxies (NGC 802 and ESO 118-G34), the kinematics of the HI suggests that the gas is in a strongly warped disk, which we take as evidence for recent accretion of HI. In the other two galaxies (NGC 2328 and ESO 027-G21) the HI must have been part of the systems for a considerable time. The HI properties of low-luminosity early-type galaxies appear to be systematically different from those of many more luminous early-type galaxies, and we suggest that these differences are due to a different evolution of the two classes. The star formation history of these galaxies remains unclear. Their UBV colours and Halpha emission-line strengths are consistent with having formed stars at a slowly-declining rate for most of the past 10^10 years. However, the current data do not rule out a small burst of recent star formation overlaid on an older stellar population.Comment: To appear in AJ, LateX, figures in gif format, paper also available at http://www.nfra.nl/~morganti/LowLu

    What Powers the Compact Radio Emission in Nearby Elliptical and S0 Galaxies?

    Full text link
    Many nearby early-type (elliptical and S0) galaxies contain weak (milli-Jansky level) nuclear radio sources on scales a few hundred parsecs or less. The origin of the radio emission, however, has remained unclear, especially in volume-limited samples that select intrinsically less luminous galaxies. Both active galactic nuclei and nuclear star formation have been suggested as possible mechanisms for producing the radio emission. This paper utilizes optical spectroscopic information to address this issue. A substantial fraction of the early-type galaxies surveyed with the Very Large Array by Wrobel & Heeschen (1991) exhibits detectable optical emission lines in their nuclei down to very sensitive limits. Comparison of the observed radio continuum power with that expected from the thermal gas traced by the optical emission lines implies that the bulk of the radio emission is nonthermal. Both the incidence and the strength of optical line emission correlate with the radio power. At a fixed line luminosity, ellipticals have stronger radio cores than S0s. The relation between radio power and line emission observed in this sample is consistent with the low-luminosity extension of similar relations seen in classical radio galaxies and luminous Seyfert nuclei. A plausible interpretation of this result is that the weak nuclear sources in nearby early-type galaxies are the low-luminosity counterparts of more powerful AGNs. The spectroscopic evidence supports this picture. Most of the emission-line objects are optically classified as Seyfert nuclei or low-ionization nuclear emission-line regions (LINERs), the majority of which are likely to be accretion-powered sources.Comment: LaTex, 16 pages including embedded figures. Accepted for publication in the Astrophysical Journa

    From gas to galaxies

    Full text link
    The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from galaxies for cosmological research as it offers an independent probe of the evolution of the star formation density in the universe. In addition it offers the possibility to detect the first star forming objects and massive black holes. In deep surveys SKA will be able to detect HI in emission out to redshifts of z2.5z \approx 2.5 and hence be able to trace the conversion of gas into stars over an era where considerable evolution is taking place. Such surveys will be able to uniquely determine the respective importance of merging and accreting gas flows for galaxy formation over this redshift range (i.e. out to when the universe was only one third its present age). It is obvious that only SKA will able to see literally where and how gas is turned into stars. These and other aspects of SKA imaging of galaxies will be discussed.Comment: To be published in New Astronomy Reviews, Elsevier, Amsterdam as part of "Science with the Square Kilometre Array", eds. C. Carilli and S. Rawlings. 18 pages + 13 figures; high resolution version and other chapters of "Science with the Square Kilometre Array" available at http://www.skatelescope.org/pages/science_gen.ht

    A Close Look at Star Formation around Active Galactic Nuclei

    Full text link
    We analyse star formation in the nuclei of 9 Seyfert galaxies at spatial resolutions down to 0.085arcsec, corresponding to length scales of less than 10pc in some objects. Our data were taken mostly with the near infrared adaptive optics integral field spectrograph SINFONI. The stellar light profiles typically have size scales of a few tens of parsecs. In two cases there is unambiguous kinematic evidence for stellar disks on these scales. In the nuclear regions there appear to have been recent - but no longer active - starbursts in the last 10-300Myr. The stellar luminosity is less than a few percent of the AGN in the central 10pc, whereas on kiloparsec scales the luminosities are comparable. The surface stellar luminosity density follows a similar trend in all the objects, increasing steadily at smaller radii up to 10^{13}L_sun/kpc^2 in the central few parsecs, where the mass surface density exceeds 10^4M_sun/pc^2. The intense starbursts were probably Eddington limited and hence inevitably short-lived, implying that the starbursts occur in multiple short bursts. The data hint at a delay of 50--100Myr between the onset of star formation and subsequent fuelling of the black hole. We discuss whether this may be a consequence of the role that stellar ejecta could play in fuelling the black hole. While a significant mass is ejected by OB winds and supernovae, their high velocity means that very little of it can be accreted. On the other hand winds from AGB stars ultimately dominate the total mass loss, and they can also be accreted very efficiently because of their slow speeds.Comment: 51 pages, including 27 figures; accepted by ApJ (paper reorganised, but results & conclusions the same

    Direct, Non-Destructive Imaging of Magnetization in a Spin-1 Bose Gas

    Full text link
    Polarization-dependent phase-contrast imaging is used to spatially resolve the magnetization of an optically trapped ultracold gas. This probe is applied to Larmor precession of degenerate and nondegenerate spin-1 87^{87}Rb gases. Transverse magnetization of the Bose-Einstein condensate persists for the condensate lifetime, with a spatial response to magnetic field inhomogeneities consistent with a mean-field model of interactions. Rotational symmetry implies that the Larmor frequency of a spinor condensate be density-independent, and thus suitable for precise magnetometry with high spatial resolution. In comparison, the magnetization of the noncondensed gas decoheres rapidly.Comment: 4 pages, 4 figure

    From treebank resources to LFG F-structures

    Get PDF
    We present two methods for automatically annotating treebank resources with functional structures. Both methods define systematic patterns of correspondence between partial PS configurations and functional structures. These are applied to PS rules extracted from treebanks, or directly to constraint set encodings of treebank PS trees
    corecore