We analyse star formation in the nuclei of 9 Seyfert galaxies at spatial
resolutions down to 0.085arcsec, corresponding to length scales of less than
10pc in some objects. Our data were taken mostly with the near infrared
adaptive optics integral field spectrograph SINFONI. The stellar light profiles
typically have size scales of a few tens of parsecs. In two cases there is
unambiguous kinematic evidence for stellar disks on these scales. In the
nuclear regions there appear to have been recent - but no longer active -
starbursts in the last 10-300Myr. The stellar luminosity is less than a few
percent of the AGN in the central 10pc, whereas on kiloparsec scales the
luminosities are comparable. The surface stellar luminosity density follows a
similar trend in all the objects, increasing steadily at smaller radii up to
10^{13}L_sun/kpc^2 in the central few parsecs, where the mass surface density
exceeds 10^4M_sun/pc^2. The intense starbursts were probably Eddington limited
and hence inevitably short-lived, implying that the starbursts occur in
multiple short bursts. The data hint at a delay of 50--100Myr between the onset
of star formation and subsequent fuelling of the black hole. We discuss whether
this may be a consequence of the role that stellar ejecta could play in
fuelling the black hole. While a significant mass is ejected by OB winds and
supernovae, their high velocity means that very little of it can be accreted.
On the other hand winds from AGB stars ultimately dominate the total mass loss,
and they can also be accreted very efficiently because of their slow speeds.Comment: 51 pages, including 27 figures; accepted by ApJ (paper reorganised,
but results & conclusions the same