18 research outputs found

    Expression Patterns of Protein Kinases Correlate with Gene Architecture and Evolutionary Rates

    Get PDF
    Protein kinase (PK) genes comprise the third largest superfamily that occupy ∼2% of the human genome. They encode regulatory enzymes that control a vast variety of cellular processes through phosphorylation of their protein substrates. Expression of PK genes is subject to complex transcriptional regulation which is not fully understood.Our comparative analysis demonstrates that genomic organization of regulatory PK genes differs from organization of other protein coding genes. PK genes occupy larger genomic loci, have longer introns, spacer regions, and encode larger proteins. The primary transcript length of PK genes, similar to other protein coding genes, inversely correlates with gene expression level and expression breadth, which is likely due to the necessity to reduce metabolic costs of transcription for abundant messages. On average, PK genes evolve slower than other protein coding genes. Breadth of PK expression negatively correlates with rate of non-synonymous substitutions in protein coding regions. This rate is lower for high expression and ubiquitous PKs, relative to low expression PKs, and correlates with divergence in untranslated regions. Conversely, rate of silent mutations is uniform in different PK groups, indicating that differing rates of non-synonymous substitutions reflect variations in selective pressure. Brain and testis employ a considerable number of tissue-specific PKs, indicating high complexity of phosphorylation-dependent regulatory network in these organs. There are considerable differences in genomic organization between PKs up-regulated in the testis and brain. PK genes up-regulated in the highly proliferative testicular tissue are fast evolving and small, with short introns and transcribed regions. In contrast, genes up-regulated in the minimally proliferative nervous tissue carry long introns, extended transcribed regions, and evolve slowly.PK genomic architecture, the size of gene functional domains and evolutionary rates correlate with the pattern of gene expression. Structure and evolutionary divergence of tissue-specific PK genes is related to the proliferative activity of the tissue where these genes are predominantly expressed. Our data provide evidence that physiological requirements for transcription intensity, ubiquitous expression, and tissue-specific regulation shape gene structure and affect rates of evolution

    A review of developmental networks: incorporating a mutuality perspective

    Get PDF
    During the past decade, mentoring research has broadened from its traditional dyadic perspective to examine the support provided by a "developmental network." This article reviews the literature on developmental networks—groups of people who take an active interest in and action toward advancing a protégé’s career. Building on positive organizational scholarship (POS) research on high-quality connections and relationships, the authors propose that a "mutuality perspective," or taking the viewpoints of all members of the developmental network into account, is a notable gap in developmental network research. They apply this perspective to developmental networks research and discuss implications and avenues for future inquiry. As part of their review, the authors clarify the boundaries of the developmental network construct. They also identify and discuss four research streams that encompass extant studies of developmental networks. This article extends previous reviews of the broad field of dyadic mentoring by providing the first systematic review of developmental network research

    Controversies in using urine samples for prostate cancer detection: PSA and PCA3 expression analysis

    No full text
    PURPOSE: Prostate cancer (PCa) is one of the most commonly diagnosed malignancies in the world. Although PSA utilization as a serum marker has improved prostate cancer detection it still presents some limitations, mainly regarding its specificity. The expression of this marker, along with the detection of PCA3 mRNA in urine samples, has been suggested as a new approach for PCa detection. The goal of this work was to evaluate the efficacy of the urinary detection of PCA3 mRNA and PSA mRNA without performing the somewhat embarrassing prostate massage. It was also intended to optimize and implement a methodological protocol for this kind of sampling. MATERIALS AND METHODS: Urine samples from 57 patients with suspected prostate disease were collected, without undergoing prostate massage. Increased serum PSA levels were confirmed by medical records review. RNA was extracted by different methods and a preamplification step was included in order to improve gene detection by Real-Time PCR. RESULTS: An increase in RNA concentration with the use of TriPure Isolation Reagent. Despite this optimization, only 15.8% of the cases showed expression of PSA mRNA and only 3.8% of prostate cancer patients presented detectable levels of PCA3 mRNA. The use of a preamplification step revealed no improvement in the results obtained. CONCLUSION: This work confirms that prostate massage is important before urine collection for gene expression analysis. Since PSA and PCA3 are prostate specific, it is necessary to promote the passage of cells from prostate to urinary tract, in order to detect these genetic markers in urine samples
    corecore