645 research outputs found

    Simulating the Response of a Composite Honeycomb Energy Absorber

    Get PDF
    NASA has sponsored research to evaluate an externally deployable composite honeycomb designed to attenuate loads in the event of a helicopter crash. The concept, designated the Deployable Energy Absorber (DEA), is an expandable Kevlar(Registered TradeMark) honeycomb. The DEA has a flexible hinge that allows the honeycomb to be stowed collapsed until needed during an emergency. Evaluation of the DEA began with material characterization of the Kevlar(Registered TradeMark)-129 fabric/epoxy, and ended with a full-scale crash test of a retrofitted MD-500 helicopter. During each evaluation phase, finite element models of the test articles were developed and simulations were performed using the dynamic finite element code, LS-DYNA(Registered TradeMark). The paper will focus on simulations of two full-scale impact tests involving the DEA, a mass-simulator and a full-scale crash of an instrumented MD-500 helicopter. Isotropic (MAT24) and composite (MAT58) material models, which were assigned to DEA shell elements, were compared. Based on simulations results, the MAT58 model showed better agreement with test

    Material Model Evaluation of a Composite Honeycomb Energy Absorber

    Get PDF
    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test

    Induction of non-d-wave order-parameter components by currents in d-wave superconductors

    Full text link
    It is shown, within the framework of the Ginzburg-Landau theory for a superconductor with d_{x^2-y^2} symmetry, that the passing of a supercurrent through the sample results, in general, in the induction of order-parameter components of distinct symmetry. The induction of s-wave and d_{xy(x^2-y^2)-wave components are considered in detail. It is shown that in both cases the order parameter remains gapless; however, the structure of the lines of nodes and the lobes of the order parameter are modified in distinct ways, and the magnitudes of these modifications differ in their dependence on the (a-b plane) current direction. The magnitude of the induced s-wave component is estimated using the results of the calculations of Ren et al. [Phys. Rev. Lett. 74, 3680 (1995)], which are based on a microscopic approach.Comment: 15 pages, includes 2 figures. To appear in Phys. Rev.

    Hypothesis of two-dimensional stripe arrangement and its implications for the superconductivity in high-Tc cuprates

    Full text link
    The hypothesis that holes doped into high-Tc cuprate superconductors organize themselves in two-dimensional (2D) array of diagonal stripes is discussed, and, on the basis of this hypothesis, a new microscopic model of superconductivity is proposed and solved. The model describes two kinds of hole states localized either inside the stripes or in the antiferromagnetic domains between the stripes. The characteristic energy difference between these two kinds of states is identified with the pseudogap. The superconducting (SC) order parameter predicted by the model has two components, whose phases exhibit a complex dependence on the the center-of-mass coordinate. The model predictions for the tunneling characteristics and for the dependence of the critical temperature on the superfluid density show good quantitative agreement with a number of experiments. The model, in particular, predicts that the SC peaks in the tunneling spectra are asymmetric, only when the ratio of the SC gap to the critical temperature is greater than 4. It is also proposed that, at least in some high-Tc cuprates, there exist two different superconducting states corresponding to the same doping concentration and the same critical temperature. Finally, the checkerboard pattern in the local density of states observed by scanning tunneling microscopy in Bi-2212 is interpreted as coming from the states localized around the centers of stripe elements forming the 2D superstructure.Comment: Text close to the published version. This version is 10 per cent shorter than the previous one. All revisions are mino

    Spin-Orbit Coupling and Symmetry of the Order Parameter in Strontium Ruthenate

    Full text link
    Determination of the orbital symmetry of a state in spin triplet Sr2_2RuO4_4 superconductor is a challenge of considerable importance. Most of the experiments show that the chiral state of the z^(kx±iky)\hat{z} (k_x \pm ik_y) type is realized and remains stable on lowering the temperature. Here we have studied the stability of various superconducting states of Sr2_2RuO4_4 in the presence of spin-orbit coupling. Numerically we found that the chiral state is never the minimum energy. Alone among the five states studied it has =0=0 and is therefore not affected to linear order in the coupling parameter λ\lambda. We found that stability of the chiral state requires spin dependent pairing interactions. This imposes strong constraint on the pairing mechanism.Comment: 4 pages, 4 figure

    INTERLAYER VORTICES AND EDGE DISLOCATIONS IN HIGH TEMPERATURE SUPERCONDUCTORS

    Full text link
    The interaction of an edge dislocation made of half the superconducting plane with a magnetic interlayer vortex is considered within the framework of the Lawrence-Doniach model with negative as well as positive Josephson interlayer coupling. In the first case the binding energy of the vortex and the dislocation has been calculated by employing a variational procedure. The current distribution around the bound vortex turns out to be asymmetric. In the second case the dislocation carries a spontaneous magnetic half-vortex, whose binding energy with the dislocation turns out to be infinite. The half-vortex energy has been calculated by the same variational procedure. Implications of the possible presence of such half-vortices for the properties of high temperature superconductors are discussed.Comment: 14 Latex pages, 1 figure available upon request

    The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    Get PDF
    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level

    Nonlinear Meissner Effect in CuO Superconductors

    Full text link
    Recent theories of the NMR in the CuO superconductors are based on a spin-singlet dx2−y2d_{x^2-y^2} order parameter. Since this state has nodal lines on the Fermi surface, nonlinear effects associated with low-energy quasiparticles become important, particularly at low temperatures. We show that the field-dependence of the supercurrent, below the nucleation field for vortices, can be used to locate the positions of the nodal lines of an unconventional gap in momentum space, and hence test the proposed dx2−y2d_{x^2-y^2} state.Comment: 5 pages (RevTex), 1 figure (postscript file incl.

    Nonlinear Schroedinger equation for a superfluid Bose gas from weak coupling to unitarity: Study of vortices

    Full text link
    We introduce a nonlinear Schroedinger equation to describe the dynamics of a superfluid Bose gas in the crossover from the weak-coupling regime, where an1/3≪1a n^{1/3}\ll 1 with aa the inter-atomic s-wave scattering length and nn the bosonic density, to the unitarity limit, where a→+∞a\to +\infty. We call this equation the {unitarity Schroedinger equation} (USE). The zero-temperature bulk equation of state of this USE is parametrized by the Lee-Yang-Huang low-density expansion and Jastrow calculations at unitarity. With the help of the USE we study the profiles of quantized vortices and vortex-core radius in a uniform Bose gas. We also consider quantized vortices in a Bose gas under cylindrically-symmetric harmonic confinement and study their profile and chemical potential using the USE and compare the results with those obtained from the Gross-Pitaevskii-type equations valid in the weak-coupling limit. Finally, the USE is applied to calculate the breathing modes of the confined Bose gas as a function of the scattering length.Comment: 10 pages, 15 figure
    • …
    corecore