765 research outputs found

    Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Get PDF
    Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats

    Hong-Ou-Mandel interferometer with cavities: theory

    Full text link
    We study the number of coincidences in a Hong-Ou-Mandel interferometer exit whose arms have been supplemented with the addition of one or two optical cavities. The fourth-order correlation function at the beam-splitter exit is calculated. In the regime where the cavity length are larger than the one-photon coherence length, photon coalescence and anti-coalescence interference is observed. Feynman's path diagrams for the indistinguishable processes that lead to quantum interference are presented. As application for the Hong-Ou-Mandel interferometer with two cavities, it is discussed the construction of an optical XOR gate

    What chemical species are responsible for new particle formation and growth in the Netherlands? A hybrid positive matrix factorization (PMF) analysis using aerosol composition (ACSM) and size (SMPS)

    Get PDF
    Aerosol formation acts as a sink for gas-phase atmospheric species that controls their atmospheric lifetime and environmental effects. To investigate aerosol formation and evolution in the Netherlands, a hybrid positive matrix factorization (PMF) analysis was conducted using observations from May, June, and September 2021 collected in the rural site of Cabauw in the central part of the Netherlands. The hybrid input matrix consists of the full organic mass spectrum acquired from a time-of-flight aerosol chemical speciation monitor (ToF-ACSM), ACSM inorganic species concentrations, and binned particle size distribution concentrations from a scanning mobility particle sizer (SMPS). These hybrid PMF analyses discerned four factors that describe aerosol composition variations: two size-driven factors that are related to new particle formation (NPF) and growth (F4 and F3), as well as two bulk factors driven by composition, not size (F2 and F1). The distribution of chemical species across these factors shows that different compounds are responsible for nucleation and growth of new particles. The smallest-diameter size factor (F4) contains ammonium sulfate and organics and typically peaks during the daytime. Newly formed particles, represented by F4, are mainly correlated with wind from the southwesterly-westerly and easterly sectors that transport sulfur oxides (SOx), ammonia (NH3), and organic precursors to Cabauw. As the particles grow from F4 to F3 and to bulk factors, nitrate and organics play an increasing role, and the particle loading diurnal cycle shifts from daytime to a nighttime maximum. Greater organics availability makes secondary organic aerosol (SOA) more influential in summertime aerosol growth, principally due to volatility differences produced by seasonal variation in photooxidation and temperature.</p

    Quantum Forbidden-Interval Theorems for Stochastic Resonance

    Get PDF
    We extend the classical forbidden-interval theorems for a stochastic-resonance noise benefit in a nonlinear system to a quantum-optical communication model and a continuous-variable quantum key distribution model. Each quantum forbidden-interval theorem gives a necessary and sufficient condition that determines whether stochastic resonance occurs in quantum communication of classical messages. The quantum theorems apply to any quantum noise source that has finite variance or that comes from the family of infinite-variance alpha-stable probability densities. Simulations show the noise benefits for the basic quantum communication model and the continuous-variable quantum key distribution model.Comment: 13 pages, 2 figure
    corecore