249 research outputs found

    Optimal Stopping Rules and Maximal Inequalities for Bessel Processes

    Get PDF
    We consider, for Bessel processes X ∈ Besα with arbitrary order (dimension) α ∈ R, the problem of the optimal stopping (1.4) for which the gain is determined by the value of the maximum of the process X and the cost which is proportional to the duration of the observation time. We give a description of the optimal stopping rule structure (Theorem 1) and the price (Theorem 2). These results are used for the proof of maximal inequalities of the type E max Xrr≤r ≤ γ(α) is a constant depending on the dimension (order) α. It is shown that γ(α) ∼ √α at α → ∞

    Skew-Product Decomposition of Planar Brownian Motion and Complementability

    Get PDF
    International audienceLet ZZ be a complex Brownian motion starting at 0 and WW the complex Brownian motion defined by Wt=0ZsZsdZsW_ t = \int_0^\cdot \frac{Z_s}{|Z_s|} dZ_s. The natural filtration FW\mathcal{F}_W of WW is the filtration generated by ZZ up to an arbitrary rotation. We show that given any two different matrices Q1Q_1 and Q2Q_2 in O2(R)O_2(\mathbb{R}), there exists an FZ\mathcal{F}_Z-previsible process HH taking values in {Q1,Q2}\{Q_1,Q_2\} such that the Brownian motion 0HdW\int_0^\cdot H \cdot dW generates the whole filtration FZ\mathcal{F}_Z. As a consequence, for all aa and bb in R\mathbb{R} such that a2+b2=1a^2 + b^2 = 1, the Brownian motion aRe(W)+bIm(W)a \mathrm{Re}(W) + b \mathrm{Im}(W) is complementable in FZ\mathcal{F}_Z

    Measurable, Nonleavable Gambling Problems

    Get PDF
    1 online resource (PDF, 22 pages

    New procedures for testing whether stock price processes are martingales

    Full text link
    We propose procedures for testing whether stock price processes are martingales based on limit order type betting strategies. We first show that the null hypothesis of martingale property of a stock price process can be tested based on the capital process of a betting strategy. In particular with high frequency Markov type strategies we find that martingale null hypotheses are rejected for many stock price processes

    Group Strategyproof Pareto-Stable Marriage with Indifferences via the Generalized Assignment Game

    Full text link
    We study the variant of the stable marriage problem in which the preferences of the agents are allowed to include indifferences. We present a mechanism for producing Pareto-stable matchings in stable marriage markets with indifferences that is group strategyproof for one side of the market. Our key technique involves modeling the stable marriage market as a generalized assignment game. We also show that our mechanism can be implemented efficiently. These results can be extended to the college admissions problem with indifferences

    A Cryptographic Moving-Knife Cake-Cutting Protocol

    Full text link
    This paper proposes a cake-cutting protocol using cryptography when the cake is a heterogeneous good that is represented by an interval on a real line. Although the Dubins-Spanier moving-knife protocol with one knife achieves simple fairness, all players must execute the protocol synchronously. Thus, the protocol cannot be executed on asynchronous networks such as the Internet. We show that the moving-knife protocol can be executed asynchronously by a discrete protocol using a secure auction protocol. The number of cuts is n-1 where n is the number of players, which is the minimum.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    A semantical approach to equilibria and rationality

    Full text link
    Game theoretic equilibria are mathematical expressions of rationality. Rational agents are used to model not only humans and their software representatives, but also organisms, populations, species and genes, interacting with each other and with the environment. Rational behaviors are achieved not only through conscious reasoning, but also through spontaneous stabilization at equilibrium points. Formal theories of rationality are usually guided by informal intuitions, which are acquired by observing some concrete economic, biological, or network processes. Treating such processes as instances of computation, we reconstruct and refine some basic notions of equilibrium and rationality from the some basic structures of computation. It is, of course, well known that equilibria arise as fixed points; the point is that semantics of computation of fixed points seems to be providing novel methods, algebraic and coalgebraic, for reasoning about them.Comment: 18 pages; Proceedings of CALCO 200

    Stochastic Games with Lim Sup Payoff

    Full text link
    Consider a two-person zero-sum stochastic game with countable state space S, finite action sets A and B for players 1 and 2, respectively, and law of motion p. Let u be a bounded real-valued function defined on the state space S and assume that the payoff from 2 to 1 along a play (or infinit

    Manipulation Strategies for the Rank Maximal Matching Problem

    Full text link
    We consider manipulation strategies for the rank-maximal matching problem. In the rank-maximal matching problem we are given a bipartite graph G=(AP,E)G = (A \cup P, E) such that AA denotes a set of applicants and PP a set of posts. Each applicant aAa \in A has a preference list over the set of his neighbours in GG, possibly involving ties. Preference lists are represented by ranks on the edges - an edge (a,p)(a,p) has rank ii, denoted as rank(a,p)=irank(a,p)=i, if post pp belongs to one of aa's ii-th choices. A rank-maximal matching is one in which the maximum number of applicants is matched to their rank one posts and subject to this condition, the maximum number of applicants is matched to their rank two posts, and so on. A rank-maximal matching can be computed in O(min(cn,n)m)O(\min(c \sqrt{n},n) m) time, where nn denotes the number of applicants, mm the number of edges and cc the maximum rank of an edge in an optimal solution. A central authority matches applicants to posts. It does so using one of the rank-maximal matchings. Since there may be more than one rank- maximal matching of GG, we assume that the central authority chooses any one of them randomly. Let a1a_1 be a manipulative applicant, who knows the preference lists of all the other applicants and wants to falsify his preference list so that he has a chance of getting better posts than if he were truthful. In the first problem addressed in this paper the manipulative applicant a1a_1 wants to ensure that he is never matched to any post worse than the most preferred among those of rank greater than one and obtainable when he is truthful. In the second problem the manipulator wants to construct such a preference list that the worst post he can become matched to by the central authority is best possible or in other words, a1a_1 wants to minimize the maximal rank of a post he can become matched to
    corecore