
University of Pennsylvania
ScholarlyCommons

Statistics Papers Wharton Faculty Research

1994

Optimal Stopping Rules and Maximal Inequalities
for Bessel Processes
L. E. Dubins

Larry A. Shepp
University of Pennsylvania

A. N. Shiryaev

Follow this and additional works at: http://repository.upenn.edu/statistics_papers

Part of the Probability Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/statistics_papers/403
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Dubins, L. E., Shepp, L. A., & Shiryaev, A. N. (1994). Optimal Stopping Rules and Maximal Inequalities for Bessel Processes. Theory of
Probability & Its Applications, 38 (2), 226-261. http://dx.doi.org/10.1137/1138024

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fstatistics_papers%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/wharton_faculty?utm_source=repository.upenn.edu%2Fstatistics_papers%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/statistics_papers?utm_source=repository.upenn.edu%2Fstatistics_papers%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=repository.upenn.edu%2Fstatistics_papers%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1137/1138024
http://repository.upenn.edu/statistics_papers/403
mailto:repository@pobox.upenn.edu


Optimal Stopping Rules and Maximal Inequalities for Bessel Processes

Abstract
We consider, for Bessel processes X ∈ Besα with arbitrary order (dimension) α ∈ R, the problem of the optimal
stopping (1.4) for which the gain is determined by the value of the maximum of the process X and the cost
which is proportional to the duration of the observation time. We give a description of the optimal stopping
rule structure (Theorem 1) and the price (Theorem 2). These results are used for the proof of maximal
inequalities of the type

E max Xrr≤r ≤ γ(α) is a constant depending on the dimension (order) α. It is shown that γ(α) ∼ √α at α → ∞.
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Vol. 38, No. 2

Translated from Russian Journal

OPTIMAL STOPPING RULES AND MAXIMAL INEQUALITIES FOR
BESSEL PROCESSES*

L. E. DUBINSt, L. A. SHEPP, AND A. N. SHIRYAEV

(Translated by N. A. Tolstoganova)

Abstract. We consider, for Bessel processes X E Bes"(x) with arbitrary order (dimension)
a E R, the problem of the optimal stopping (1.4) for which the gain is determined by the value of the
maximum of the process X and the cost which is proportional to the duration of the observation time.
We give a description of the optimal stopping rule structure (Theorem 1) and the price (Theorem 2).
These results are used for the proof of maximal inequalities of the type

E maxXr _< "),(c)V/T,

where X BesS(0), T is arbitrary stopping time, -(c0 is a constant depending on the dimension
(order) c. It is shown that -()

Key words. Bessel processes, optimal stopping rules, maximal inequalities, moving boundary
problem for parabolic equations (Stephan problem), local martingales, semimartingales, Dirichlet
processes, local time, processes with reflection, Brownian motion with drift and reflection

1. Formulation of the problem. Main results

1. A continuous non-negative Markov stochastic process X (Xt(x))t>_o, x >_ O,
given on some filtered probability space (t,9, (t)t>0, P) is called a Bessel process of
dimension (order) a E R (X E nes"(x)) if Xo(x) x, its infinitesimal operator is

1(-1 d d2 )(1.1) n= - x dx

and the boundary point x {0} is a trap if <_ 0, a reflecting boundary if 0 < < 2,
and an entrance boundary if _> 2.

(For a detailed study of Bessel processes X e BesS(x) see in [20], [13], [14], [17],
[29] and later in 2.)

In case _< 0 and x 0, the process Xt(O) =- 0 at t _> 0.
In case 1, the process X (Xt(x))t>o may be realized as the process

[B+x[ ([Bt+xl)t>_o, where B (Bt)t>_o is standard (B0 0, E(Bt-B)
O, E(Bt Bs)2 t- s, t >_ s >_ 0) Brownian motion.

In case a is an integer, a d 2, 3,..., the process X Besd(x) may be realized
as a radial part of d-dimensional Brownian motion B(a)= (B(a),... ,Bd(ad)), i.e.,

(1.2) Xt(x) E (Bi(ai)t) 2

i---1

*Received by the editors October 2, 1992. The authors started the joint work over the given
problems considered in the article in May-June 1992 in Bell Labs to which L. Dubins and A. Shiryaev
were invited by L. Shepp. The main results stated in this paper were obtained in the same period.

tDepartment of Mathematics, University of California, Berkeley, California 94720.

tAT&T Bell Laboratories, Murray Hill, New Jersey 07974.

Steklov Mathematical Institute, RAN, Vavitov str. 42, Moscow, Russia.
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 227

d 2where the vector a (al,...,ad) is such that its norm lal x (lal 2 Y’-i=l ai)
and Bl(al),...,Bd(ad) are independent Brownian motions, exiting from the points
al,..., ad, respectively.

2. Let X E Bes"(x) and let S (St(x,s))t>o be the stochastic process given by
the formula

(1.3) St(x, s) s V max<tX(x),

where 0 _< x <_ s < cx, a V b max (a, b).
Let us define for the Markov process (X, S) under consideration the "value"

(1.4) V,a(x, s) sup E [Sr(X, s) CT],

where c is some positive constant (the cost for the unit of observation) and the sup is
taken over the class of all stopping times T (i.e., the finite Markov time with respect
to (grt)t>_0).

The purpose of this paper is to study the problem of existence of optimal stopping
times T, (for which E[Sr, (x,s)- CT] V,a(x,s) for all s >_ x > 0), their structure
and the structure of the value V,a(x, s) as a function of x, s, a (as well as that of "the
cost" c > 0). One of the main results of the work is the following.

THEOREM 1. Assume X Bes(x),where the dimensionality a R and c > O.
The optimal stopping time r, (in problem (1.4)) exists and has the following form:

(1.5) T, inf {t >_ 0" (Xt, St) e D, },
with Xt Xt(x), St St(x, s) and "stopping domain"

(1.6) D, {(x, s)" s, _< s, x _< g,(s)},

where g, g,(s) is the non-negative (and unique) solution of the equation

2c
(1.7)

o--2g’g[1-()-2] =1

such that g,(s) <_ s for all s >_ O,

(1.8) lim
g,(s)

1,
8--*00 8

and s, is the root of the equation g,(s) O.
Remark. In case c 2, equation (1.7) is considered to be of the form

(1.9) 2cg’g log
s

1,
g

obtained from (1.7) by passing to the limit as a- 2 - 0 (taking into account that
[1 xZ]/3 log(l/x), fl --, 0, x > 0).

Let us discuss a number of corollaries of Theorem 1 (see Figs. 1, 2 ).
Case c 1. In this case, equation (1.7) becomes

1
(1.10) 2cg’

8--g
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228 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

5

2

0 2 3 g.(s)

FIG. 1. Graphs of the curves g, g,(s) dividing the domains D, and C, for c 1 .for the
values of the parameter c 1, 2 ,9. (The computer computations for the solutions of equation
(1.7) were carried out by John Overdeck,ATT Bell Laboratories.)

Let us rewrite this equation in the form

d_s _-(,_
dg 2c

Its general solution has the form

(s(g) g + + Ke/,

where K are constants. It follows from this that the only solution which satisfies
the condition limg__,o (s(g)/g) 1 (compare with condition (1.8)) is the solution
corresponding to the value K 0.

Thus in the given case c 1, we obtain the result of [10]:

1(1.11) g,(s) s
2c’

"the critical" point is s, 1/(2c) and the optimal T, is

{ 1}=inf t: St-Xt >_ c
In other words, the observation should be stopped as soon as (a gap) Gt =- St- Xt

exceeds the value 1/(2c). It is clear that in the given case the "stopping domain" D,
has the form

{1}D,= (x,s): s>_x+
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s=Z
* 2C

229

FIG. 2. The case 1. The stopping domain D. and the domain of continued observation
C,; the domain "covered" by the process (Xt, St) for 0 <_ <_ T, and (Xo, So) (x,s) is hatched.

but the domain of continued observation C, {(x, s)" s _> x >_ 0} \ D, has (see Fig.
2) the following form here:

{ 1}C,= (x,s)’x<s<x+c
(We shall come back to a more detailed consideration of the case when a 1 in 3.)

Case <_ O. The point x 0 is a trap for the Bessel process X E Bess (0). Thus,
if X0(0) 0, then Xt(O) 0 for all t _> 0 and the value T, 0 is optimal for all s _> 0.
The corresponding equation, which determines the boundary between the domains D,
and C,, has in case c 0 the form

(1.12) 2cg’
1 1

s-g s+g

One can easily see that in this equation the chosen solution g, g,(s) (with the
property lims-_,c (g,(s)/s) 1) is such that s g,(s) 1/(2c), s --, c.

Case 0 < c < 1. In these cases, the point x 0 is a reflecting boundary for
the Bessel processes X e BesS(x). Moreover, one can see from (1.7) that g’,(0) 0.
Let us denote by s,(c) the values of critical points s, (i.e., the roots of the equation
g,(s) 0) at the given values of a. One can show that an increase of the values of
c causes the increase of values s,(c) as well. (The qualitative behavior of g, g,(s)
boundaries at different values of c is given in Fig. 3.)

Case a > 1. If 1 < a < 2, then the point x- 0 again (as in the case when
0 < c _< 1) is reflecting and is the entrance boundary for c >_ 2. As is shown in (1.7),
in these cases, g’,(0)- oc. (See Fig. 3.)

The numerical calculation of s, (3) (at c- 1) gives the following value"

s,(3) 1.156

It is shown in 6 that s,(a) a/4 as a -+ oc (Theorem 7); s,(c) 0 for a <_ 0.
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230 L. E. DUBINS L. A. SHEPP AND A. N. SHIRYAEV

S
a’--I

0<<1

(o,0)
FIG. 3. A schematic drawing of the dividing curves (stopping boundaries) g, g,(s) for

various values of the parameter E R.

For greater clarity let us consider equations of the type (1.7) for a number of
values of the parameter w

3g2
2cg’

s g3
1

2cg’
8--g

1
2cg’

8--g
1

2cg’
o(/)’

1 1
2cg’

s-g g

s+g’

3. In case a > 0, we represent the domain of continued observation C, as the
sum of the two domains C, and C,2, where

C, {(x,s): g,(s) < x <_ s and s, < s},
C, {(x,,): 0 < x <, < ,,}.

(In case a _< 0, the value s, 0, and the point (0,0) E D, and C, C,; the
corresponding domain C,2 .)

THEOREM 2. The value V, V,(x, s) is determined by the following formulas:

if a > O,then
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 231

y: (x, )

(1.13) + -(x , ()) +
Cx + s,,

,()
(x, s) E D,,

(, ) c,,
(x, ) c,;

if O,then

(1.14) V,(x, s) s + - [g,2(s) x2] + cx2 log
x

g,(s)’

if (2 < O,then

y: (x, )

(1.15) c 2s + --(x2 g,(s)) + 9"() )
Remark. The formulas for V,(x, s) can be obtained through passage to the limit

as (2 0 in V,a(x,s), i.e., (1.14) follows from (1.13) as (2 0. Similarly, in (1,13) the
value V,(x, s) for (2 2 must be understood as the result of passage to the limit as
(2 2 which leads to the following result:

(1.16)

s, (x, s) e D.,
c 2 cg2, (s) log

g* (s)
v,(x,) s + (x ,(s)) + , (x,) e c,,

xx (x, s) c,+s,,

where s, is the root of the equation g,(s) 0, and g, g,(s) satisfies equation (1.9).
The proof of Theorems 1 and 2 in the case (2 > 1 is given in 3; 4 is devoted

to the case when (2 1, where the (more general), problem of optimal stopping of
Brownian motion with drift and (instantaneous) reflection is considered as well. The
case when (2 < 1 is analyzed in 5. In 6 the results of optimal stopping are applied
to the maximum inequalities for Bessel processes. It is shown that if X BesS(0),
then, for each stopping time T,

E maxXu _< 7((2)v/-E-’T,

where V((2) V/4sl((2), and 81((2 is the root of the equation g,(s) 0 for the
function g,(s) which is the solution of equation (1.7) with c 1. It is also shown that
7(a) v as a - .The authors of the paper express their gratitude to M. Yor for his productive
consultations concerning Bessel processes.

The computer program has been carried out by N. Tolstoganova to whom the
authors express their gratitude.
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232 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

2. Bessel processes

1. The systematic study of Bessel processes was initiated in McKean’s paper [17].
The main sources of information concerning these processes are monographs [13], [14],
[29], and, in particular, [20].

The simplest way of constructing a definition of Bessel processes X E Bess (x) is
as follows.

Let B (Bt)t>_o be Brownian motion on (gt,$’, (grt)t>0, P). Let us consider the
stochastic differential equation (a E R)

(2.1) dYt dt + 2 ]XtdB, Yo y >_ O.

This equation has the only non-negative strong solution Yt Yt(Y), t >_ 0, i.e., such
that, for each t > 0, the values of Yt are 9vtB-measurable, where $’tB a{Bs, s < t}.
According to [20], the process Y (Yt (y))t>_0 is called "the square of an a-dimensional
Bessel process" (Y Besq(y)). The expression u a/2 1 is called the index of the
process. For a 0, the process Y is a martingale, for a < 0 it is a supermartingale,
for c > 0 it is a submartingale.

The infinitesimal operator of the process is

d d2
(2.2) L a-y + 2y

dy2

The boundary point y 0 in case a _< 0 is a trap (or an absorbing point, [13,
Chap. IV]), in the case where 0 < a < 2 it is the reflecting (instantaneously reflect-
ing, [13, Chap. IV) boundary and it is the entrance boundary if a > 2.

It should be noted that in the case where a d 1, 2,... is an integer, the
process Y Besqd(y) permits the following obvious realization.

Let B(a)= (Bl(al),... ,Bd(ad)) be &dimensional Brownian motion, starting at
the point a- (al,..., ad). Let us form the process Yt Yt(lal2), t > 0, with

d

(2.3) Yt(la[2) E (B(a)) 2

i-1

and assume that
d ft dB(ai).Y(lal)oi=1

The process B (Bt)t>o is, obviously, one-dimensional standard Brownian motion.
In this case, from ItS’s formula it follows that Yt, t > 0, satisfies the equation

(2.4) dYt d. dt + 2tdB.
Thus one can say that the square of the radial part of d-dimensional Brownian motion
is "the square of a Bessel process of d-dimensionality".

2. Thus, let Y Besq(y) for y >_ 0. We form the process

(2.5) x =,/V.

In other words, let X (Xt(x))t>_o be a non-negative process such that Xt(x)
v/V(x), x > 0.
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 233

The so-determined Markov process X is the one that is called an a-dimensional
Bessel process (Z e BesS(x)). Its generator is

L= - x dx +

d P(Xt < ylXo x) are expressed in terms of Besselwhile the densities pt (x, y)
functions (see [20, p. 415]), which explains why the process is called the "Bessel"
process.

Let us also note that for all a >_ 1 the Bessel processes are (non-negative) sub-
martingales.

In case a _> 2, the boundary point x 0 is the entrance boundary, which allows
one to use the It5 formula for v/Yt(x2) which for Xt(x) v/Yt(x2) leads to the
following stochastic differential equation:

a- 1 dt
(2.6) dXt(x)

2 Xt(x)
dBt, Xo(x) x >_ O.

This equation has a strong solution not only for a >_ 2 but also for all a > 1 (see [20]),
which coincides with x/-, Y e Besq(x2). Thus equation (2.6) can be considered to
be a constructive method of describing Bessel processes for a > 1. The situation is
more complicated for a <_ 1. If a 1, then the corresponding Markov process X(x)

ld2/dx2 and the point x 0 is the reflectinghas the infinitesimal operator L 5
boundary. It is well known (see [20]), that such a process can be realized in the
form Xt(x) IBt + x I, i.e., as the Brownian motion, starting at the point x >_ 0
with reflection at x {0}. The corresponding analogue of equation (2.6) here is the
stochastic differential equation with reflection:

(2.7) dXt dLt (X) + dBt, Xo(x) x,

where Lt(X) is the local time of the process X at zero; see also 4. If 0 < a < 1,
then in this case (unlike the case a >_ 1) the Bessel processes X(x) E BesS(x) are
not semimartingales (i.e., processes which do not permit a representation as a sum
of a local martingale and a process of locally bounded variation). However, they still
permit a representation of the form

(a- 1)
(2.S) X (x) x + + 2

where again B (Bt)t>_o is a standard Brownian motion, and H (Ht)t>_o is a

process of locally zero quadratic variation. (In [11], [12] such processes are called
Dirichlet processes.) Moreover, the process H can be described as follows ([2]-[5],
[26])"

ds
(2.9) Ht p.v.

Xs(x)
I(X > e)_d_ lim ds.

o X(x)

Let {L, a > 0} be a family of local times of the process X. It is well known (see
[20]) that for each non-negative Borel function o(a), for a >_ 0,

(2.10) 99(Xs) ds (a)aa-lL(da).
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234 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

Taking this property into account, the process H (Ht)t>_o (as "a principal value"
in the sense of Hadamard [2, p. 232] and [26, p. 121]), can be defined in the following
way:

(2.11) Ht lim Lta-2da (L Lt )a-2da.
eO e

In case a O, the point x 0 is a trap (absorbing point) for he proee88

X Bes(), z O. In hi8 ee he 8qu&re of he proee88, Y X, 8i8fie8 he
equ&ion

d 2dBt
and is a martingale.

In ce < O, the corresponding equation for Y X2 has the form

d dt + 2dBt
and, consequently, this process is a non-negative submartingale which after reaching
the point x 0 stays there. (These remarks explain M. Yor’s point of view that in
case c < 0 the study of the properties of the process X can be easily carried out by
studying the properties of its square, Y X2.)

3. The case when > 1

1. Let X E BesS(x), where c > O,x > O, Xt Xt(x), St St(x, s), x < s. We
denote

v(z, c],

where the sup is taken over all finite stopping times T, and Ez,s means the expectation
under the assumption Xo(x) x, So(X, s) s, x < s. (We now reserve the notation

V.a(x, s) for the function given in Theorem 2.)
From (3.1) it follows that V(x, s) > s. If a d is an integer, then from (2.3) we

find that, for each finite stopping time T,

Ez,Sr ES(x s) <s V EmaxXr(x) <s V d(EsuplB}l + x).
r<_r \ r<_r I

According to Doob’s inequality, E supr<
follows that

Therefore, from (3.1) it

(3.2) E,s[S CT] <_ s + dx + 2dVT cE’r.

It is clear from this, that in taking the sup of T in (3.1) it is sufficient (in the case of
integral a d 1, 2,...) to consider only T with Er < .

From (3.2) it also follows that

d2
sup E[Sr(x, s) CT] <_ S + d x +

C

Thus (for integral a d 1, 2,...)

(3.3)
d2 d2

s <_ V(x,s) <_ s + d.x + <_ s[1 + d] +
c c
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 235

Using the comparison theorem (see [20, Chap. IX]) for solutions Y e Besqa(y)
and Y E Besq[a]+l(y) of equations (2.1), we find that for each a sup in (3.1), it is
sufficient to use only those T for which ET < and (3.3) holds with d [a A 0] + 1.

2. From (3.1) we find that (with the function V,a(x,s), given in Theorem 2)

(3.4)

V(x, s) <_ sup Ex,s [Sr V,a(XT., $7.)] + sup Ex,s [V,a(X7., $7.) CT]
<_ sup Ex,s [V,a(XT., ST.) CT]

where we used the fact that V,a(x, s) >_ s. Therefore, to prove Theorems 1 and 2 it is
sufficient to show that

(A1) for each (admissible) stopping time T (with ET < 0),

(.) E, [y:(x, s) ] < V:(x, ), o < < ,
and

(A2) for the stopping time T,, given in Theorem 1,

(3.6) Ex,8[ST.. -CT,] V,(x, s), 0 <_ x <_ s.

Before checking the validity of properties (A1) and (A2) let us make a number of
preliminary considerations, which explain the appearance of equations (1.7) and the
form of the functions V,a (x, s) in the conditions of Theorem 2.

Finding "the value" V(x, s) in problem (3.1) can, generally speaking, be carried
out within the common theory of optimal stopping rules of the Markov processes with
continuous time (see, for example, [28], [27], [33]). Without specifying the exact cor-
responding formulations concerning the possibilities of applying the general theory to
the Markov process (Z, S) under consideration (eventually when establishing the
and (A2) properties we shall act otherwise, using the results of the general "Markov"
theory of optimal stopping as guidelines in combination with "martingale" methods),
let us remember, that the value V(x, s) satisfies, for each point (x, s), the equation

V(x,s) max {Vo(x,s), (TT.(v)V)(x,s) cE,,sT(V)},
where v v(x, s) is "the sufficient by small" neighborhood of the point (x, s), -(v) is
the time of the first exit of the process (Xt(x), St(x, s))t>o from this neighborhood,
(TT.(v)Y)(x,s) Ex,sV(XT.(v)(x), ST.(,)(x,s)) and (in the given case) Vo(x,s) s is
the gain from stopping without observation. (See, for example, [27, Thm. 5] and [33,
Chap. III].)

It is also known ([28], [27], [33]), that in "regular" cases the optimal stopping
time T, has the following structure:

, .f {t: v(x,, s,) Vo(X,, s,)},
i.e., T, is the time of the first hit in the "stopping domain"

D, { (x, s)" V(x, s) Vo(x, s)}.
In the domain of "continued observation"

c, { (x, ). V(x, ) > yo(x, s) },
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236 L.E. DUBINS L. A. SHEPP AND A. N. SHIRYAEV

it follows from (3.7) that the value V(x, s) satisfies the equation

(3.8) V(x,s) (T(,)Y)(x,s) cEx,sT(v),

which implies that

(3.9) AV(x, 8) c,

where n is a characteristic operaor of he Mrkov process (X, S) (see [29] nd [33,
Chap. III, 8].)

In connection with (3.9) let us consider the structure of the process (X, S)
(Xt(x),St(x, s))t>o in greater detail.

If, for t 0, Xo(x) x, So(x,s) s, where x < s, then the process (X,S)
begins moving along the horizontal Hs {(y, s): 0 < y < s}. So that until the time

ors inf{t: Xt s} only the first component X of the process (X, S) is changed, and
the second component being unchanged remains equal to s. Getting to the diagonal
A {(x, s): x s}, the process (X, S) begins to move in a strange way both along
the diagonal upwards and leaving it and starting to move along higher horizontal lines.

Thus, in a certain sense, the two-dimensional Markov process (X, S) considered
is degenerate (wandering along horizontal lines for x < s with a "rise" to higher
horizontal lines at the times of getting into the diagonal A {(x, s): x s}).

Let us also notice that the component X is a diffusion type process. At the same
time, the component S is the process of a locally bounded (almost surely) variation.
It is interesting to emphasize that the degeneration of the process (X, S) considered
turns out to be, as it will become clear from further analysis, a favourable circumstance
which allows one to give a closed solution of the optimal stopping problem in the "two-
dimensional problem (3.1)".

3. In the domain of continuation of observations C. the value V(x, s) satisfies
equation (3.9). Therefore, if x < s and it is a priori known that the function V(x, s)
is sufficiently smooth on x, then equation (3.9) becomes the equation

LV(x,s) =c,

where L is the infinitesimal operator of the process X, defined by formula (1.1), i.e.,

OV(x, o V(x, s)(3.10)
2x Ox 2 Ox2 c, 0 < x < s.

The general solution of this equation (for a fixed s) is defined, as one can easily
see, by the following formulas:

if a 0, then

(3.11)

(3.12)

if a 2, then

if a(a- 2) # 0, then

V(x, 8) cx2 log x A- a(8)x2 -4- b(s);

V(x, s) x2 + a(s) log x + b(s);

a(s)
(3.13) V(x, s)= Cx2 + x _2 + b(s),

where a(s) and b(s) are undefined (for each s) constants, subject to a definition.
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 237

s,

FIG. 4. The dividing curve g,(s),the stopping domain D, and the domain of continued obser-
vation C, C1, U C2,.

Considerations leading to their determination, consist of the following.
Equation (3.10), determining V(x,s), "acts" in the domain of "continued obser-

vation" C,, which, as follows from the general theory, must have the form

c, {(x, V(x, >

and thus being dependent on an unknown function V(x, s), is unknown as well.
The guideline for the next step is the leading idea that the domains C, and

D, {(x,s): V(x,s) s} are divided by some (for the present unknown) boundary
g, g,(s), where D, has the following form (see Fig. 4):

D, ((x,s)" O <_ x <_ s, s, <_ s, x <_ g,(s)}.

An intuitive argument for the likelihood of existence of such a dividing boundary
consists of the following.

If some point (x0, so) belongs to D,, then all the points (x, s) with x _< x0 and
s >_ so must (according to the meaning of problem (1.4) considered) also belong to
D,. (Recall that in case c <_ 0 the point x0 0 is a trap for X E BesS(0) and,
consequently, all the points (0, s0), so >_ 0, belong to the domain D,.) Further, if
one supposes that the point of the diagonal (xo, so) with x0 so > 0 belongs to
the domain D,, then, consequently, the observation must be stopped immediately
and the corresponding value V(so, so) so. Let us consider, however, the stopping
rule according to which an observation takes place during some small interval of time
A and at the time A the observation is stopped. Then up to a stochastic quantity
of order o(A) the quantity SA So V maxu_<A X coincides with so V (so + AX),
where AX XA-Xo. IfAX <_ 0, then SA so+o(A); but ifAX > 0, then
Sa so + AX + o(A). Hence, one can conclude that

Eo,o[Sa cA] so + Eo,o[Sa; AX <_ 0] + Eo,o[Sa; AX > 0] cA + o(A)
so + Eo,s lAX; AX > 0] cA + o(A)

(a.14) so + cA + o(A),
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238 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

where we used the fact that, for X E BesS(s0), so > 0,

Eso (AX; AX > 0) -= EsoAXI(AX > O),. 2"
In view of the fact that the right part of (3.14) contains the quantity x/, we see
that at least for rather small A it is more advantageous not to stop the observation
instantaneously (at the point (so, So), so > 0) but to realize the observations. Thus
the points of the diagonal (so, so), so > 0, must belong to the domain of continuation
of the observation. (If > 0, then the point (0, 0) also belongs to C..)

Along with the unknown functions a(s), b(s), in (3.11)-(3.13), the boundary
g. g.(s) is also unknown and, consequently, we need at least three conditions for
their determination. One of these conditions that of the continuity of the value at the
boundary is "quite obvious":

(3.16) V(x, s)lxTg.(s) s.

The condition of "smooth pasting" used later,

OV(x,s)
GX

is less obvious, it states that the derivative of the value with respect to x on ap-
proaching the boundary must coincide with the corresponding derivative of the gain,
obtained from the instantaneous stopping (i.e., coincide with OYo(..’s)lx.g.() which in
the given case is equal to zero, since V0(x, s) s).

Remark. As far as we know the condition of "smooth pasting" was used for
the solution of concrete problems of statistical sequential analysis in the thesis of
V. S. Mikhalevich (1955) (see also [19]) and A. N. Shiryaev (1961), done in Moscow
under the leadership of A. N. Kolmogorov. This condition was used in 1961 in the
works of H. Chernoff [6] and D. Lindley [16], and in 1965, in the works of P. Samuelson
[22] and H. McKean [18] in connection with options of "American type". In the work
of V. Benesh, L. Shepp and G. Witsenhauser [1] applications and (and a survey) of
this condition to problems of optimal control are given. See also 38 in [33], where
one can find a number of references to corresponding publications, and the paper [27],
devoted to a systematic study of analytical methods of the solution of problems of
optimal stopping by means of their reduction to "Stephan’s problems" (for parabolic
equations with moving boundaries).

Finally, the third condition of normal "reflection" on a diagonal used later

OV(x,s)
=0

is suggested by the following considerations based as in (3.15) on "the effect of /".
Let us suppose that the value V(x, s) is a rather smooth function. Then consid-

ering the evolution of the function V(Xt, St) for t _< A and X0 s, So s, s > 0,
we come to the following expression based on the formula of complete probability and
Tailor’s decomposition:

V(s, s) -cA + E,8[V(s + AX, s)]AX <_ 0]P,(AX _< 0)
+ E,[V(s + AX, s + AX)IAX > 0]Ps,(AX > O) + O(A)
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 239

Since Es,AX sA, Es,s(AX)2 A and Es,(AX; AX > 0) v/A/(2r), we
find from (3.19) that

Ov
(-4/ x

10V OV
-2 b-x2 + o(4) 0.

It is clear from this that passage to the limit as A -- 0 leads to the condition
(3.18). (This condition can also be obtained by the methods used in the proof of
Theorem 8 in [27].)

Thus for the determination of the three unknown functions a(s), b(s), and g,(s)
we have three conditions (3.16), (3.17), (3.18).

At first let a(a- 2) = 0. Then from (3.13) and (3.16), we have

(3.20)
c 2 a(s)-, () + + () .

,-2()
Condition (3.17) gives

2c (2 a)a(s)(3.21) --g.(s) + O.
O --I (8)

Therefore,

and
C

b(s) s- g,(s).
a-2

Thus for g,(s) < x <_ s (i.e., in the domain C, in accordance with Fig. 4) for
(- 2) # 0,

(3.22) V,(x, s) s + -(x2 g, (s)) + 1
a a(a- 2) z

Finally, taking into account condition (3.18), we find that g, g,(s) is a solution of
the equation

(3.23)
2c [ (_)-2]a_ 2g(s)g’(s 1- =1.

Similar considerations for the case a 0 lead to the same equation (3.23). In case
a 2 we find from (3.12) and (3.16)-(3.1S) that g, g,(s) is the solution of the
equation

(3.24) 2cg(s)g’(s)log
s

=1,
9()

which, as has been already mentioned, belongs to the family (3.23), understood, for
a 2, as the result of formal passage to the limit as a- 2 --. 0 (taking into account
that [1 xZ]/l log (I/x), --. 0, x > 0).
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240 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

In case a(a- 2) 0, the corresponding expressions for V,a(x, s) in the domain
C, are obtained analogously and are given in (1.14), (1.16).

If a 1, then equation (3.23) takes the form

the general solution of which was described in 1, Corollary 1 to Theorem 1. In the
general case (a 1), it is probably impossible to find solutions of equations (3.23) in
closed form. However, we can give additional conditions, which allow us to "reduce"
the set of solutions, among which we have to look for "the needed" solution g, g,(s).

In fact, it has already been mentioned in 1 that the value V,(x, s) satisfies the
inequalities

d2
(3.26) s <_ V,a(s, s) <_ s[1 + d] +

C

with d [a V 0] + 1.
If a(a- 2) : 0, then from (3.22) and (3.26) We find, denoting h,(s) g,(s)/s,

that if V,(x, s) is determined by means of formula (3.22), then the inequalities

1 c 2 2ch2,(s) 1] 1 + d d2
(3.27)

1 < + [1 h,(s)] + [h,-2(s) <: +s-s a a(-2) s 2cs

must hold. Assume now for simplicity of considerations that c 1 and a d 3 (the
considerations in the general case are analogous). Then (3.27) becomes the inequality

1 1 2 3 2 4 91 <-+ + (s) h,(s)<-+--- s - -h, s s2

from which it follows that

5 + lim sup h, (s)- h,
8--O

and

-3 + lims_,inf - h, (s) h,(s) O.

Let h limsups h,(s) and _h lim inf h,(s). Then from the two last relations
we find that

(3.28) + :h O, + 3 0

and, consequently,

2-
_h(3.29) 5h + h3

nt-

Since one must have 9,(s) <_ s, then _h_h <_ h <_ 1 and it follows from (3.29) that
h _h_h. Denoting a h we find from (3.28) that (a- 1)2(a + 5) 0. Consequently,
_h h 1, i.e., "the optimal" boundary 9, 9,(s), dividing the domains of stopping
the observation D, and of continuing the observation C,, must satisfy the property

(3.30) lim
9,(s)

1,
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 241

which gives the condition at infinity for equations (3.23) and (3.24) and selects in the
family of their solutions that solution (moreover, the only one) which is in keeping with
the problem under consideration. (The existence and uniqueness of such a solution
can be obtained by standard methods of the theory of differential equations of first
order, see, for example, [30, Part 1, Chap. I].)

4. Let s, s,(a) be the root of the equation g,(s) 0, where g, g,(s) is the
solution of equation (1.7), satisfying condition (3.30) at infinity.

In accordance with Fig. 4 and the above arguments, in the domain C, the function
V,(x, s) is given by formula (3.22). If the observation begins at the point (x, s) e C,2,
then (with the exception of the point (0, 0) which is a trap for a < 0) stopping of the
observation can be realized only after getting into the domain C, by passing through
the point (s,, s,).

Therefore, if V,a(s,,s,) is the value under the assumption that the observation
begins at the point (s,,s,), then the value V,a(x,s) for (x,s) e C,2 and a > 0 will be
determined by

(.1) Y:(x, ) V," (,, ,) E,,,

where a, inf{t" (Xt, St) (s,, s,) }.
The quantity Ex,sa, can be determined from the following considerations.
Let X E Besa(x), a > 0. Then the process Y X2 satisfies equation (2.1) and,

consequently, the process (Yt Yo -at)t>o is a martingale.
Thus, for each t > 0,

Ex,8 [Y,^t x2 a(a, A t)] 0.

Then

(3.32) aEx,,(a, A t) Ex,,[Y,^t x2] 2
X
2

and, according to the Fatou lemma,

Ex,a, < s*2 x2

The finiteness of Ex,a, enables one to go to the limit as t in (3.32) which gives
for E,sa, the following expression:

(3.33) E,a,
2 X2

Since g,(s,)= O, we have from (3.22)

2

Together with (3.31) this yields (for each point (x, s) E C,2 and a > 0)
C 2(3.34) V,(x, s) s, + -x

which explains the appearance of this expression in (1.13) in case (x, s) e C,2.

5. After these preliminary remarks let us proceed directly to the proofs of Theo-
rems 1 and 2 for the case when a > 1.
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242 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

In this case the Bessel processes X E BesS(x) may be considered as solutions of
the stochastic differential equation (2.6).

The process (X, S) is a two-dimensional semimartingale, where the first compo-
nent is a diffusion-type process, and the second a process of locally bounded variation.
For the function V,(Xt, St), where V,(x, s) is given in (1.13), it is possible to apply
the It(5 formula ([20, Chap. IV, 3]; [13]), which gives the expression (omitting the
index c in V, for simplicity)

V,(Xt, St) =V,(Xo, So) + (LV,)(Xr, Sr) dr

OV,
(Xr S,.)dS,. + (Xr, S)/ --57, -57x

where (see (1.1) and (2.6))

1 (c- 1 OV,
(nv,)(x, s) - x cox

and the stochastic integral with respect to dB is a local martingale. For the function
V,(x, s), given in (1.13),

(3.37) (LV,)(x,s) O, (x,s) e D, {(x, s)" x > 0}.

Therefore, for each finite Markov time T we find, from (3.35)-(3.37), that

OV,
(Xr, S,.) dS, + (X St) dB(3.38) V, (Z, S,-) <_ V, (Xo, So) + CT + "S "X

Note that in this case

OV,
(X,. St)dB,. O,(.)

ov.since if X St, then D-7 (X, St) 0 (see (3.18)); if X < St, then for all t > r such
that t < inf{n > r: Xn St} the process S does not change and thus the increment

&-s =0.
Hence from (3.38) and (3.39) it follows that, for each stopping time with Ex,sT <

ov,
(x, &) dB(3.40) E,sV,(Xr, &-) cEx,T < V,(x, s) + E,

Let us consider the stochastic integral in the right part of this inequality. We have- x ((x, s) e ci c)eB

Ar g,

and

(3.36) (LV,)(x,s) c, (x,s) e C, uC,2,
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 243

If (Xr, St) E C,2, then X _< S, and, therefore, for each T with Ex,sT < c (even if
Ex,sx/ < c; see [20], [31])

(3.42)
7"

E,8 XI((X,S) C2,)dBr O.

In the same way, if (X,S) C,, then g(Sr) _< Xr <_ Sr and thus X-ag,(S) <_
X _< S. Therefore, if one can prove that for each T with Ex,sT < (:x:) the inequality

r

)
1/2

(3.43) Ex,s S2rdr < oc

holds, then from the Burkholder-Davis-Gundy inequality ([20], [31]), for local mar-
tingales, stopped at the time T, we will have the expression

(3.44)

T

E, XI((Xr, S) C1,)dB

+ E, xl-ag,(S) I ((X, Sr) C1,) dS O,

which together with (3.42) proves that

(3.45)
OV,

(X S) dBr 0

To prove (3.43) note that

<_ Ex,(S2. T) 1/2 <_ (E,,S2. E,,,T) 1/2,

where

]X (x)I < + IZ (x)l8 T rT rT

If a >_ 1 and is an integer (a d), then for the estimation of Emaxr<r ]Xr(x)] 2

one can use (2.3) which together with the Doob inequality (Esupt< ]Bt] 2 _<
4E(BI)2 _< 4ET) leads to the inequality

(3.46) E max IX(x)12 <_ x2 + 4aET.

If a is an arbitrary non-negative number and X BesS(x), then from the com-
parison theorem for the solution of (2.1) we obtain (see, for example, [20, Chap. IX,
3]) the validity of the estimate (3.46) with d [a] + 1.

Thus (3.43) has been established. Hence we have inequality (3.44), which together
with (3.42) proves property (3.45). By virtue of (3.40) this proves (3.5), i.e., the
property (A1). Let us show that for T. given in Theorem 1, we have (3.6), i.e.,
property (A2). By analyzing the preceding proof of (A) we notice that the inequality
in (3.38) arose because, for each T,

(LV,)(Xr, St) dr <_ CT.
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244 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

However, for - T, we have equality, because (LV,)(Xr, Sr) c for r _< -, in
accordance with (3.36), if (X0, So) E C, U C,2. Together with (3.39) this leads to the
equality

(3.47)
* OV,

(Xr Sr) dBV.(X.,S.) V.(Xo, So) + . + -x
which holds for all (Xo, So) (in case (Xo, So) D. this equality is obvious). Thus,
all that is left to prove for (A2) is to establish that Ex,sr, < , (x,s) C1. U C2..
si., s ws shown bov ( (3.33)), E,. (x )/ < fo (, ,) e C., it
is sufficient to prove that Ex,sw. < for (x, s) C.1.

In the domain C., where g.(s) < x <_ s, the function rn(x, s) Ex,-* is, for
each fixed s, the solution of the differential equation

(3.48) Lm(x,s) -1

(see Theorem 13.16 in [29]), satisfying the boundary condition limlg,(s)rn(x, s) 0
and the condition of normal "reflection" from the diagonal

08
=0

(see, for example, [21, Chap. V, (6.7)]).
Taking into account these facts we readily find that

.()
(3.49) m(x, s) _la (x2 g2,(s)) c(a 2) (x, ) e c,1,

X

which, in particular, yields the required finiteness of E,s-,.
Thus the optimality of T, is established in case c > 1.

4. The case when a 1. Optimal stopping of the Brownian motion
with a drift and instantaneous reflection

1. In case c 1, the Bessel process X (Xt(x))t>_o, x >_ O, is a Markov process
with the infinitesimal operator

1 d2
(4.1) L

2 dx2’ x > O,

and the boundary point x {0}, which is a reflecting boundary. It is well known
([20, p. 81]) that such process can be realized as the modulus of a Brownian motion

(B0 0)"

(4.2) Xt(x) Ix + Btl.

Using Tanaka’s formula ([20, Chap. VI, 1]) we find that

(4.3) Ix + Btl x + f0 sign (x + B) dB + Lt,

where L (Lt)t>o is a continuous increasing process (local time of the process
(x + Bt)t>o at zero), and signx 1 for x > 0 and signx -1 for x < 0. Property
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 245

(4.3) can be reformulated saying that the (non-negative) process Z(x) (Zt(x))t>o
is the solution of the stochastic differential equation with reflection,

(4.4) dZt dt + dLt(X), Xo(x) x,

where/ (t)t>_o is the Brownian motion process, and L (Lt(X))t>_o a continuous
increasing process with L(X) 0 and

(4.5) XsdL(X) O.

(It would be more correct to say that the process X(x) is the first component of "the
process with reflection (X, L(X))’’, satisfying equations (4.4) and (4.5)); see [32], [20,
Chap. IX] or [21, Chap. V]).

Below we shall not only prove Theorems 1 and 2 for the given case a 1, but also
examine a somewhat more common case, considering the process X(x)= (Zt(x))t>o,
which is the solution of the stochastic differential equation

(4.6) dXt #dt + dt + dLt(Z), Xo(x) x >_ 0,

where L(X) satisfies condition (4.5). (If Xo(x) x > 0, then the process X behaves
"locally" as the Brownian motion t with the drift #t.) Let us assume, as above, that
St St(x, s), where

(4.7) St(x,s)- max{s, supXr(x)},
r<t

and let

(4.8) V(x, s) sup Ex,s[ST. CT].
7"

THEOREM 3. Let it < c and

l log(I--Pc)(4.9) K, -2--
In "problem (4.8)" the optimal stopping time Tt, exists and can be taken in the form

(4.10) TU inf{t: St- Xt >_

Thus

(4.11)

(x, s) E D,,
(X, 8) e C

(x, s) C

where gt,(s) s-Ku, D, {(x,s): s >_ x+Ku},C {(x,s)" s-Kt, < x <_ s, s >
Kt,}, C2 {(x, s)" 0 _< x _< s _< Kt, }.

COROLLARY. For # 0 the value V(x, s) coincides with the function V,(x, s),
1. In (0, 0),

1 (#) 1
(4.12) Vt,(0 0) K -2--:t log 1 -c --* --’2c # --. 0.
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246 L.E. DUBINS L. A. SHEPP AND A. N. SHIRYAEV

Preliminary consideration. The infinitesimal operator L of the process X(x),
satisfying the equation (4.6) has the form

d 1 d2
L= " + d%-Z"

Using the same scheme of establishing the value V(x, s) as in the case # 0, a 1,
we find (compare with (3.10)), that (under the a priori assumption of "smoothness"
of the value) Vt,(x s) satisfies the equation

ov( ,(4.13) # Ox 2 Ox2 c,

the common solution of which (for each fixed s) has the following form:

c
(4.14) Y(x, s) a(s) + b(s)e-2t’x + -x.

We shall find the independent constants a(s), b(s) and the boundary g g(s) (compare
with the case # 0, a 1, considering 3) from the additional conditions

OV Ov
(s, s) o(4.15) Y(g(s), s) s, Ox (g(s), s) 0,

and the assumption of "smoothness" of the boundary g g(s) and the value. From
the second condition and (4.14) we find that

(4.16)
c 2b(8)e_2,g(s).

From here and from the first condition in (4.15) we see that

c
(4.17) a(s) + + -fig(s)= s.

Finally the third condition in (4.15) gives

(4.18) b’(s) -a’(s)e2"s.

From (4.16),

(4.19) b’(s)e-2t’g(s) Cg’(s) O,

and from (4.17),

(4.20) a’(s) + g’(s) 1.

Formulas (4.18)-(4.20) give the equation for g g(s):

(4.21) Cg’[1 e2"(g-)] 1.

It should be noted that as tt --* 0 this equation takes the form of the equation

(4.22)
1

2cg
8--g
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 247

from Theorem i in 1 (see (1.10)).
We see directly that equation (4.21) has (in the class of solutions g g(s), such

that lims--.o (g(s)/s) 1) the solution g(s) s- K, where the constant K can be
readily found by substituting g(s) s- K in (4.21):

Consequently, K K

_c [1 e-2tK] 1.

-log(1- #/c)/(2#). Finally, from (4.17) and (4.18) we get

c c
(4.23) a(s) s (s

2#2

c
(4.24) b(s) -2

e2"(s-KE).

From (4.23), (4.24), and (4.14) we obtain the representation for Vt,(x,s in the
domain C1. As to the representation for Vt,(x s) in the domain C2, one must note
first that in this case (for (x, s) E C2)

(4.25) Vt, (x, s) V. (K., Kt, cEx,a,,

where (see Fig. 5)
a, inf {t" (Xt, St) (K, K) }.

Thus, since (K, K) C and

C [e_2.g. 2.K. 1](4.26) Vu(K., K.) K. + +

it suffices to find Mu (x, s) E,au. In the domain C2 the function Mu (x, s) satisfies
the equation

1 02MOM
(x, ) + (x, ) -1(4.27) , Ox2

for 0 < x < s with "reflection" conditions

OM OM
=0, =0

Ox x=0 Os

and M(K, K) 0. The common solution of the equation (4.27) has (for p # 0)
the following form (compare with (4.14) at c -1)"

M(x, s) a(s) + b(s)e-2"
1

x
Taking into account the above-mentioned additional conditions, we can readily find
that

1[-"" -"] + (, x).(.S) M,(x, )

Using this expression and (4.26) we derive from (4.25) the representation for V(x, s)
in the domain C (see (4.11)).
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248 L.E. DUBINS, L. A. SHEPP AND A. N. SHIRYAEV

2. After these preliminary considerations suggesting the possible optimal stopping
time and the structure of the value, we proceed to prove Theorem 3 using the same
scheme as in Section 5 in 3.

Proof of Theorem 3. Bearing in mind representation (4.6) and taking into account
the possibility of using Ith’s formula for V(x, s) (see [20, Chap. IV, 3]) we obtain

oo Jo ijotO2vav. au. (x &) dS + dG X, S, G Xo So) + S X +

G(Xo, So) + ( + aZ: )& +

(4.) + G (x, &) a(x) + (x, &) a&.

The last integral is equal to ero since S "increases" only on the set {r: X S},
but (s,s) 0 Similarly the lasg but one integral is equal to ero since L(X)
increases on the set {r" X 0}, and (0, s) 0. Note that V.(, s) c for all
(z, s) (in the domain C U C, V. c, but in the domain D., V. 0). Therefore,
for any Markov finite time r it follows from (4.29) that

and then (under the sumption N,r < )

" OG (X

Thus in order to prove the property (A) (see (a.g)) it is sumcient to show that

(4.a) N,

or, equivalently, that

[1

(4.33) + E, ;
In the domain C, we have -K S X K 0. And in the domain C, 0

Xr K. Therefore, for any # 0, # < c, the integrands in the stochastic integrals
in (4.33) are bounded and, consequently, the assumption Ex,sT < ensures the
fulfillment of equality (4.33). The case # 0 is considered in a similar way.

Thus, property (A1) holds for all # < c.
Now let us consider T inf{t: St Xt K}. As in 3, to see that property

(A2) is satisfied for this stopping time it is sufficient to establish that E,s < .
This follows directly from the following representation for M(x, s) Ex,T:

M,(x,)
1 (e2g. e2(( n.) + -)), (x, ) e

(4.34)
+ (x,
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 249

to prove which it is sufficient to note the following.
In the domain C the function Mt,(x s) satisfies the equation (4.27) with condi-

tions
OM
Os =0, M(s gu, s) =0.

2g--8

We immediately verify that the first formula in (4.34) gives Mu(x, s) in the domain

C. As for the representation of Mt,(x s) in the domain C2u, it follows from

M(x, s) t,(x, s) + M(Kt,, gt, (x, s) e C2

where Mu(x, s) is determined in (4.28), and Mt,(Ku, K) is determined from the first
formula in (4.34).

We point out a number of simple corollaries directly following from (4.34)"

1 [e2K. + e_2K. 2](4.35) M,(0, 0)

Thus, assuming # - 0, we see that

1
(4.36) M0(0, 0) E0,0T* 2c2

where T* inf{t: St Xt >_ 1(2c)}. As # -- 0, (4.34) also yields

1/(4c (x- s) 2, (x, s) e(4.37) Mo(x, s) 1/(2c2) x2, (x, s) e C.
Thus, properties (A1) and (A2) are established, which proves Theorem 3.

3. The above-mentioned method of formulating the optimal stopping rules for
Brownian motion with drift and reflection (see equation (4.6)) can be used in the case
of Brownian motion (with drift) on the whole straight line R.

Namely, let X(x) (Xt(x))t>_o be a process such that

(4.38) dXt #dt + dtt, Xo x,

where/ (t)t>_o is a process of Brownian motion and -oc < x < ec. Set St(x, s)
s V maxr<t X(x) assume that s _> 0, and let

(4.39) Wt,(x, s) sup Ex,s[S(x, s) ca].

THEOREM 4. Let # < c and

1
log(l- #).K 2--- c

The optimal stopping time a in problem (4.39) exists and can be taken in the form

a. inf{t: St- Xt >_ K.}.

Moreover,

s, s-x>_g.,
c [e,(,()_)(4.40) Wt,(x,s) s + 2#(g,(s) x) l], s-x_<
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250 L.E. DUBINS L. A. SHEPP, AND A. N. SHIRYAEV

where g(s) s K,.
The proof is basically the same as that of Theorem 3 and, therefore, is omitted.

4. Let us compare the results of Theorems 3 and 4 in case # 0. Then, from
(4.11),

(4.41)
8,

Vo(x, s) c(x s)2 + x + 1/(4c),
cx +

s x >_
s E 1/(2c), s- x < 1/(2c),
0 <_ s _< 1/(2c).

and from (4.40)

(4.42)
(

Wo(x, c(x- s)2 + x + 1/(4c),

In particular,

1 1
(4.43) Vo(0, 0) 2-’ Wo(0, 0) cc"
We have also

1 1
(4.44) Eo,oTo

2c2
Eo,oao

4c2

(The first formula follows from (4.37), the second from Ex,sao 1/(4c2) -(x- s)2.)
Thus

1
(4.45) supE max ]Bl cr

r_<r

and

1
(4.46) sup E[rm<ax B,. ca] 4-O"

5. The case when c < 1

1. This case should be divided into two: 0 < a < 1 and a < 0. This is
connected with the fact that in the first case the domain C. consists of two subdomains,
C. C. U C2., and the point s., 0 < s. < 1/(2c), and in the second case, c _< 0, the
point s. 0 and the domain C.2 o.

As we have already mentioned in 2 in case 0 < a < 1 the process X E Besa(x)
is not a semimartingale since it is a Dirichlet process. This is connected with the fact
that in order to apply the traditional "It5 formula" for the nonsemimartingale (X, S)
one must give a special proof which is derived in [3] and [11].

We point out, however, that the functions V(x,s)= V.(x,s), defined-in (1.13),
actually depend on x through y x2 and, therefore, one can apply to the process
Y(Yt, St), where U(y, s) V(x, s), y x2, the traditional semimartingale It5 formula
(since Y is a semimartingale and U(y, s) is a sufficient by smooth function):
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 251

=V(Vo,o) + [ o

foo foo Uov
(. s) + (() + N

Remark. In case a 1 one could also operate with the process Y and not with
the process X. However, in our case we preferred to deal directly with the original
process X which corresponds better to the sense of the problem under consideration.

The expression in square brackets in equation (5.1) is equal to zero in the domain
D. and is equal to c in the domain C.. As in the case a 1 the integral with respect
to dS is equal to zero and in order to prove property (A) one must show that if
Ey,sT < , then

OU

In turn, for this i is sucient to just show that

OU.Yr St. Yrdr < .(.) E,

ov (v ) /,Since in the domain C

(v s) v(< s < ,()) <
2

and, therefore,

ov
(v, s) v(< s < ,()) < .Ey,s

In the domain C {(x,s) g.(s) < x s, s. < s},

OU
(yr, Sr c[1Oy a x

with X (y)/2. Therefore, in this case,

and to prove (5.3) we must show that

for any Markov time r with N,r < , z 1/.
But

(.) E, Vd E,(S. )/ E,S. 1/ (E,S. E,)/,

where the finiteness of E,S. E,(maxr X)2 for the processes X Bes(x), 0 <
a < 1, follows from the comparison theorem for the processes Y Besq(y), 0 < a <
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252 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

1, and Y E Besql(y) because for the last process Ex,s maxr_< Yr < c according to
Doob’s inequality.

Thus property (A1) is established.
For the proof of property (A2), which is carried out exactly in the same way

as in the case > 1, we only need to determine the finiteness of re(x, s) Ex,s’*,
which follows actually from the explicit form of re(x, s) in the domains C, and C,2" if
(x, s) e C, then m(x, s) is given by formula (3.49), and if (x, s) e C,2, then m(x, s)
re(s,, s,) + E,sa,, where a, inf{t" (Xt, St) (s,, s,)} and Ex,sa, (s2, x2)/c
(compare with (3.33)).

Now let us turn to the case a <_ 0. In this case, the point x {0} and the point
y {0} are traps for the processes X e Besa(x) and Y e Besqa(y). Here the process
Y, having the stochastic differential (see (2.1)) dYt adt+2tdBt, is a non-negative
supermartingale and, consequently, arriving in the zero state it remains in this state.
Hence it follows that the set {x, s: x 0, s >_ x} is clearly contained in the stopping
domain D,.

Letx >0, s > 0, andy=x2 > 0. As in the case0 < a < 1 considered above
to prove property (A1) we must show the validity of inequality (5.3) for any Markov
time T with Ex,sT

If c 0, then, in the domain C,,

(5.7)
OU

(Yr Sr)
c ( Yr I X

0-- log
92 (St)

c log 9(Sr--"

And if c < 0, then, in the domain C,,

(5.8)

with/3 -c > 0.
Note that if the starting point (X0, S0) (x0, so) with x0 > 0, so > 0, then from

equations (1.7) and condition (1.8) one can draw the conclusion that, in the domain
C,,

Xr Sr 8o(5.9) 1 <_
9(St) <- 9(St) 9(so)"

Therefore, in the domain C,, (OVy (Yr, St))2 is less than some constant (depending on

a and the initial point x > 0, s > 0) and, consequently, it follows from (5.3) that it
is sufficient just to establish inequality (5.5), the validity of which (again using the
comparison theorem for processes Y Besqa (y)) is established in the same way as in
the case 0 < c < 1.

This proves the validity of property (A). Property (A2) follows from the finite-
ness of m(x, s) Ex,8’*, determined by formula (3.49) for c = 0 and the formula

1[ ]x x
x

(x, s) C,

for a O.
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 253

6. On maximal inequalities for the Bessel process

1. Let X e BesS(x), St St(x, s) s V maxr_<t Xr(x). We shall consider the
value

(6.1) V(x, s) sup Ex,8[ST- CT],
7"

where we have introduced the index c in its notation.
The Bessel processes have the same property of self-similarity as does Brownian

motion: for c > 0,

(6.2) c_l/2Xct(cl/2x d_ Xt(x).

(See, for example, [20, Chap. XI, (1.10)]). From this it is easy to show that the value
V(x, s) has the following property of self-similarity:

(6.3)

In particular,

cV: (x, ) v; (x, c).

(6.4) cV 0, Vl(0, s).

We shall denote by so(a) the root of the equation g,(s) 0, where g, g,(s)
is given by equation (1.7) with condition (1.8) (for given a and c). According to
Theorem 2,

(6.5) Vca (0, Sc(C)) Sc(a),

and, in particular,

(6.6)

From (6.4),

gl (0, 81(o)) 81(O).

C8c(),
\ C /

since V(0, s) _> so(a) (see (1.13)) and, in the same way,

1V (0 csc(a)) > 1_s() v:(o,())=

This yields the following min property of self-similarity for sc(a)"

(6.7) Sc(a) s().
C

2. From (1.13),

(6.8) Vff(0, 0) sup E[maxX cT] Sc(a),

where Xr Xr(0). Together with (6.7) we conclude from (6.8) that, for each -,

E max Xr <_ (,c____,sl + cET.
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254 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

On the right side, c > 0 and it is arbitrary. Therefore,

EmaxXr
_

inf rls(c),,,
< >0 L c

+ cET] V/4sl(a)ET,

where the minimum is obtained for c (si(a)/ET)/2. Thus, the next theorem is
proved.

THEOREM 5. Let X E Besa(0), a > 0. Then,for each stopping time T,

(6.9) E maxXr < V/4s

where s(a) is the root of the equation g,(s) 0 for (the only) function satisfying the
equation

2
(6.10)

o--2

such that lims--,oo (g.(s)/s)= 1.
Remark. In case a <_ 0 and X E Besa(0), Xt =- 0, t >_ 0, and inequality (6.9)

holds in an obvious way, since s (a) 0, a <_ 0.

3. If a 1, then sl (a) 1/2 and, consequently, we obtain for the Brownian motion
B (Bt)t>_o the result of [10]"

(6.11) E maxlBl <_ 2v-.

Therefore, if one considers the pair (ET, E maxr<r IBI) as the point (x, y) in the
first quadrant {(x,y): x _> 0, y _> 0}, one can assert that when T runs through the
set of admissible Markov times, then the corresponding points (x, y) will belong to
the set

(6.12) H {(0, 0)

Let us show that the inequality in (6.11) is sharp in the sense that if T is an
arbitrary fixed number, then there exists a stopping time T T(T) such that ET(T)
T and E maxr_<r(T)IBrl x/-. Indeed, let us consider the value

Vc(0 0)= supE[max]B,]- CT] Sc(1)=
1

r<r 2C

If T.(C) inf{t: maxr_< IB,,I-IBI >_ /(2c)}, then, in accordance with the established
optimal property of this time,

E[ max IBrl--CT.(C)] 1

_<.(1 .
From (4.36), ET,(C) 1/(2c2). This means that

1
E max [Br[= --c+<.(c)

c 1
2c2 c

Therefore, using c V/1/(2T) we obtain ET,(C) T and Emax<_r.(c)IB.I -T,
which proves that the inequality in (6.11) is sharp.

D
ow

nl
oa

de
d 

07
/2

7/
16

 to
 1

30
.9

1.
11

8.
71

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 255

Let us also show that for each given point (x, y) of II there exists a (may be
randomized) stopping time a such that Ea x and E maxr< IBrl y. Indeed, if
(x, y) (0, 0), then we set cr 0. Let (x0, Y0) be some point of the set {(x, y)" x >
0, 0 < y < x/}. Let us draw a straight line through (0, 0) and (x0, Y0) denoting by
(2, )) the point of its intersection with the parabola y x/. It is clear that

2x 2x0
9

The point (2, 9) lies on the parabola y x/ and, as shown above, there exists a
Markov time such that E 2, E maxr_< IBrl 9. Let us form a new (randomized,
[33]) stopping time

{ with probability xo/2,
T

0 with probability l-x0/2.

Then E? E?. xo/2 xo and E maxr<- IBrl E maxr< IBrl. xo/2 l" xo/2 Yo.
Thus one can state that (at least admitting randomized stopping times) each point of
H can be reached in the above-mentioned sense.

4. Let us turn to the analogue of (6.11) for E max_< B. Using (4.39) and (4.42)
one can see that, for each c > 0,

1
(6.13) E maxB < cEa +r_<a 4C

and, consequently,

E max Br _< inf cE + _< x/-E-.
r<_a c>0

Thus (compare with (6.11)) for each stopping time a we obtain the following result"

(6.14) E maxB _<

established in [10] as well.
Note that as in (6.11) the inequality in (6.14) is sharp. This follows from the fact

that, for a,(c) inf{t >_ 0: maxr<t Br Bt >_ 1/(2c)},

1 1
(6.15) Ea.(c)- 4c2,

E r<.(c)sup Br =--.2c

It is also interesting to note that the comparison of formulas (4.45), (4.46), (4.43),
and (4.44) show that in "the problem E sup[max_<o B-ca]" as compared with "the
problem Esup[max_< IBI- c-]" "everything is twice as bad" which, however, is
quite natural in view of the meaning of these problems.

5. Let us again turn to

-,(c)--inf {t: maxlBrlr_<t -Bt>_ ccl }
and

a,(c) inf {t" maxB- Bt > 1}r_t
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256 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

which are optimal stopping times in the corresponding problems of optimal stopping.
As is shown above, ET,(C) 1/(2c2) and Ea,(c) 1/(2c). Let us find the probability
distribution of ’,(c) and a, (c).

To this end we note that the (P. L6vy) processes maxB-B (maxr<t Br-Bt)t>o
and I/1 (ltl)t>o, where/ is standard Brownian motion have one and the same
distribution:

Law(maxB- B) Law(I/l)
(see [20, Chap. VI, Thm. (2.3)]). Therefore, if (c) inf{t: I/1, >_ 1/(2c)}, then
Law(a,(c)) Law((c)). Since E(c)= Ea,(c) < oo, we have, for each A _> 0,

Eexp -t-A/)e(l---?(c)=1.
Hence, supposing a 1/(2c), we find (E((; A)= E(Ia):

E exp Aa--e(c) (c)=a +E exp -Aa-e(c) (c)=-a =1,

and

E exp -Aa-e(c) (c)=a +E exp Aa-e(c) (c)=a =1.

Thus (a 1/(2c)),

(6.16) Eexp a,(c) Eexp (c) coshAa"

Similarly, if 0 b0, then

Nexp -(c) cosh

om the Laplace transform (6.16) we can get a representation (in the form of
a series) for the density ,()(t) of the probability distribution ,(c), based on the
following approach suggested to us by M. Yor.

Note that

1 2 2 1)ne_2x ne (2nT1)X() cos ( +-) (- :(-)
n:0

It is also known that ([20, pp. 101-102]), if a > 0 and Ta inf(t: B a}, then

( A2 ) I exp{-a2 { A }(6.18) e-x" Eexp T.
a /(2t)}

exp t dr.

H..c., fom (.17), (.18), we obi.

1 { }(2+X)exp{-(2+l)/(2t)}dt"oh
(- p Vt

om (6.16) it follows that

{ } 1
(a P V((*() oha"
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 257

Therefore,

Eexp --- 2c)2a, c)

f0 { A2 } (2n+X)exp{-(2n+X)2/(2t)}dtexp --t 2E(- 1)n V/t3
n--0

which gives

(6.20) P(2c)a.(c)(t) 2 E(-1)n (2n + 1) exp{-(2n + 1)2/(2t)}
dt.

n=0 V/2’rt3

To find the distribution of T,(c) let us note first of all that T,(C) is equal to the
sum of the transition time T1 (c) of the process (B, max IBI) from the point (0, 0) to
the point (1/(2c), 1/(2c)) and the exit time T2(c) from the point (1/(2c), 1/(2c)) to
the domain D, {(x,s)" s-x >_ 1/(2c), s > 1/(2c)}. Let Xt(x) x+Bt, St(x,s)
s A maxr<tlZr(x)l, T(c)= inf{t: Zt(x)= a, St(x,s)= a}, a 1/(2c). Then
(x, s) Ex,se-’1 (c) is the solution of the equation

0 1 02(6.21) A 0- 20x2

with the conditions

Ox x--O

o

The general solution of equation (6.21) has the form

(x, s) a(s) cosh xx/ + b(s) sinh

From the first condition in (6.22) we find that b(s) 0. From the second condition it
follows that a(s) const. Since (1/(2c), 1/(2c)) 1, we obtain for the constant the
value (cosh x//(2c)) -1 and thus

(6.23) (x, s)
cosh xx/

cosh

According to the strong Markov property of the process (X, S) and the fact that
Law(T2(c)) Law(a,(c)) we find for T,(C) T (C)+ T2(C) that

Ex se-x*(c) E 8e-1(c) Eo,oe-:*() (x, s) -*()1:0,0e
cosh x

(cosh
Therefore, if x 0, s 0, then

(6.24) Ee-*()

(cos 
and this means that (a 1/(2c))

(6.25) Eexp --T,(C) coshAa (Eexp{_A2
2
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258 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

Hence it follows that the distribution for T.(c) is the convolution of the two
distributions for a. (c).

6. Let us consider now the problem of the probability distributions of Sa.(c)
maxr<.(c) Br and S.(c) max<.(c)IBI. In view of the strong Markov property
of the process (X, S) we conclude that, for any sl >_ 0, s2 >_ 0,

Po,o(S.() >_ sl + s2)= Po,o(S.(c):> sl)" Po,o(S.() >_ s2).

This implies that, for some constant A > 0,

(6.26) Po,0(S.() >_ s) e-xs, s >_ 0.

But Eo,0S.(c) 1/(2c) (see (6.15)). Therefore, the constant 2c and

(6.27) Po,o(S.()
_

S)--e-2cs, S

_
O.

One can also see easily that Po,o(S.(c) >_ s + 1/(2c)) Po,o(S.(c) >_ s). Therefore,

(6.28) Po,o S.(c) >_ s + s >_ 0.

We sum up our results in the form of the following (known to many specialists) state-
ment, being of independent interest.

THEOREM 6. Let B (Bt)t>o be standard Brownian motion,

aa inf t" maxBr- Bt > a, ra inf t: max [Brl- Bt > a.
r<_.t ) t r<t

Then

(6.29) EaR a2, ETa 2a2;

(6.aO) Ee--r Ee-
cosh Aa’ cosh Aa

the density of the probability distribution is

(6.31) Pa/a:(t) 2 E(--1)n (2n -t- 1) exp {--(2n -- 1)2/(2t)}.
n--0 V/2t3

the density of the probability distribution p.a/a is the convolution of two densities

Pa/a2; the probabilities are of the form

(6.32) P(maxB _> s)--e-s/a_<
s _> 0

and

P(max[Brl _>s + a e-s/a s > O.
\

7. Let X() BesS(0), a _> 0. According to Theorem 5, for each finite Markov
time T,

(6.34) E maxXr
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OPTIMAL STOPPING AND MAXIMAL INEQUALITIES 259

2-

t-

O 2 6

F,G. 5 The graph Sl(C) (-- 1/4-2(c)) of the root of the equation g,(s) 0 for c 1 as a function
of c >_ O. (The computer computation was carried out by John Overdeck, AT&T Bell Laboratories.)

where

(6.35) ")’(a) 2X/’-(a).

It is of great interest be able to find the function /- "(a) or, at least, to study its
properties.

It is clear from the above-mentioned considerations that "y(0) 0, "y(1) V.
The numerical calculation shows us that "y(3) v/4.624... (see Fig. 5).

The following consideration the idea for which belongs to M. Yor shows that for
large c, -(a) behaves like v/-.

THEOREM 7. As T ,
(6.36) + 1

and (as corollary) 81(o)/o .
Pro@ Let X() (X})) e BesS(0),

(6.37) c(c) E maxXr(").
r<l

It is clear from (6.34) that

(6.38) c(c) _< ,(a).

Let D(c) be the optimal constant in the Burkholder inequality (see [9]) for the Bessel
processes of order a:

(6.39) EmaxX() <_ D(a)Ev.

We shall show that

(6.40) (a) _< D(a).

From the problem of optimal stopping considered above it follows (see (6.8)) that (at
c=1, x=0, s=0)

supE[maxXr(a) -T] E[ max Xr(a) T.(1)] --S1(O),
"r r_’r r_"r. (1)
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260 L.E. DUBINS, L. A. SHEPP, AND A. N. SHIRYAEV

where T.(1) is the optimal stopping time, given by Theorem 1. Therefore,

Emaxr<_.(1) X(a) E’.(1)+ sl(a) and, consequently, according to (6.39), ET,(1)+
s(a) <_ D(a)Ev/T,(1). Hence,

"(a) =2V/Sl(a)= infT>0 [X/+]_ v/E-,(1) +

EV/T* (1) <<_ D(a)
v/ET.(I)

v/E,(1)

which proves (6.40).
Thus,

(6.41) c(a) <_ y(a)<_ D(a).

It is shown in [9] that, for each stopping time T,

(6.42) Emax

where C1 is some absolute constant (independent of a and the properties of T). Since

(6.43) maxt_<r X}a)
max
t<_r

it follows from (6.42) that, if 0 < Ex/ < oc, then

lim
E maxt_<r(X/v/) 1.- Ev

This and (6.37) clearly show that lim,_c (c(a)/v/-d) 1. Further, the optimal con-
tt D() (a.a9) b dnd in the following way:

D(a) sup
E maxr<r X(ra)

where sup is taken over all Markov times T such that 0 < EV/ < oc. Hence,

D(a) E max (Xr(a) /v/-)
v/

sup
Ev/

and from (6.42) it follows (for greater detail see the derivation of inequality (1.11) in

[9]) that lim__, D(a)/vfd 1. Together with lim_ c(a)/v/-d 1 this proves the
required result.
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