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Abstract 

The optimal return function for a Borel measurable gambling problem with a 

bounded utility function was shown by Strauch (1967) to be universally 

measurable when the problem is leavable in the sense that the gambler may 

terminate play at any time. The same is shown here for the more general class 

of nonleavable problems. 
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1. Introduction. The gambling theory of Dubins and Savage [8] takes place in a 

very general finitely additive framework in which a player is not restricted to 

measurable strategies. Thus the optimal return function V assigns to each 

fortune x the supremum of the utilities u(a) taken over all strategies a 

available including nonmeasurable ones. Our main concern in this paper will be 

Borel and, more generally, analytic, gambling problems which are measurable and 

countably additive in a sense to be made precise in the next section. For such 

problems, it is natural to inquire, as Dubins and Savage did, whether the 

function Vis measurable and whether it equals the function VM which assigns to 

each x the supremum of u(a) taken over only the measurable a available at x. 

These questions were first considered for the class of leavable problems in 

which a player can effectively stop at any fortune x because the Dirac delta 

measure o(x) is available there. Dubins and Savage themselves gave positive 

answers in the leavable case under assumptions of compactness and continuity 

[8, Theorem 2.16.1]. Strauch [18] formulated the notion of a Borel measurable 

gambling problem and again found positive answers. Later these results were 

generalized to the class of analytic gambling problems by Dellacherie, Meyer and 

Traki [7,13] and by Dubins and Sudderth [9]. 

The major result here is that Vis measurable and V=VM for analytic problems 

in the general, nonleavable case. Another result is a new characterization of V 

and a transfinite inductive scheme for calculating it. 

2. Preliminaries. Let (F,r,u) be a gambling problem in the sense of Dubins and 

Savage [8]. That is, the fortune space Fis a nonempty set; the gambling house 

r is a mapping which assigns to each x e Fa nonempty set, r(x), of finitely 

additive probability measures defined on all subsets of F; and the utility 
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function u is a bounded, real-valued function with domain F. A strategy a 

available at Xis a sequence a
0

, a
1

, ... such that a0 E r(x) and, for n ~ 1, 

is a mapping with domain Fn such that a (x1 , ... ,x) E r(x) for every n n n 

a n 

n (x
1

, ... ,xn) E F [8, pp.11-12]. Dubins and Savage show [8, section 2.8] that 

every strategy a determines a finitely additive probability measure, also 

denoted by a, on the algebra of clopen subsets of the history space H = F x F x 

(Here Fis given the discrete topology and H the product topology.) A 

gambler with initial fortune x may choose any a available at x and the 

coordinate process h = (h
1

,h2 , ... ) on H with distribution a is then thought of 

as the gambler's sequence of fortunes. 

Let us recall briefly the two general approaches taken by Dubins and Savage. 

In the first approach, a player starting at x E F selects a strategy a available 

at x and a stop rule t [8, p.20]. The pair w = (a,t) is a policy available at x 

and the utility of w is 

u(w) = u(a ,,t) 

the expected utility under a at the time of stopping. The optimal return 

function is defined to be 

(2.1) U(x) maximum of sup u(w) and u(x), 

where the supremum is over all w available at x [8, section 2.10]. 

In the second approach, a player starting at x selects a strategy a 

available there as before but is not allowed to stop. Rather the utility of a 

is defined to be 

u(a) i~f ~~E u(a,t) 

limtsup u(a,t) 

where the "lim sup" is taken over the directed set of stop rules t. The optimal 

return function is now defined as 
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(2.2) V(x) sup u(u) 

where the supremum is over all u available at x [7, pp. 39-41]. 

The second approach essentially includes the first. This is because the 

return function U for a problem (F,r,u) is equal to the return function 

corresponding to V for the problem (F, r', u) where I''(x) = r(x) u {o(x)} for 

every x [8 1 corollary 3.3.3.]. 

Assume from now on that Fis a Borel set by which we mean a Borel subset of 

a complete, separable metric space. Let @(F) be the collection of countably 

additive probability measures defined on the sigma-field ~(F) of Borel subsets 

of F. Then @(F) is also a Borel set when equipped with the usual weak star 

topology (See, for example, Parthasarathy [15, chapter 2] or Dellacherie and 

Meyer [7, chapter III, 60 to 62).) Next assume that, for every x E F and every 

1 E r(x), the measure 1 is countably additive when restricted to ~(F) and, for 

simplicity, identify 1 with its restriction to ~(F). Assume further that r is 

analytic in the sense that the set {(x,1): 1 E r(x)} is an analytic subset of 

F x @(F). (Recall that an analytic set is the continuous image of a Borel set.) 

Finally assume that the utility function u is bounded and upper analytic in the 

sense that (x: u(x) > a} is an analytic set for every real number a. A problem 

(F,r,u) satisfying the assumptions of this paragraph is called analytic. The 

class of such problems includes the Borel measurable problems of Strauch [18) 

and is essentially the same as the class studied by Dellacherie and Meyer [7] 

except that they assume leavability and allow u to be unbounded above. A 

related class of dynamic programming problems was investigated by Blackwell, 

Freedman, and Orkin [1]. 

A strategy u = (u0 ,u
1

, ... ) is called measurable if , for n = 1,2, ... , the 
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mapping u: Fn ~ 0(F) is universally measurable; i.e. measurable with respect to 
n 

the completion of every probability measure on ~(Fn). Every measurable 

strategy u determines a countably additive probability measure µ(u) on the 

sigma-field ~(H) = ~(F) x ~(F) x ... of Borel subsets of H. That is, the µ(u) -

n marginal distribution of h 1 is u
0 

and, for every n ~ 1 and (x1 , ... ,xn) e F, the 

µ(u) - conditional distribution of hn+l given h1 = x1 , ... ,hn = xn is 

u (x
1

, ... ,x ). For simplicity, u is written for µ(u) below. (For a measurable 
n n 

u, it is natural to consider u(u) limtsup u(u,t) where the "lim sup" is taken 

over Borel measurable stop rules t. However, u(u) = u(u) (20, Theorem 3.2).) 

For x e F, let ~(x) be the collection of all measurable strategies u available 

at x and define the optimal return from measurable strategies VM(x) as 

sup{u(u): u E ~(x)). 

Here is our main result. 

Theorem 2.1. If (F,r,u) is analytic, then V = VM and Vis upper analytic. 

Most of the paper is devoted to the proof which relies, in part, on a 

similar result about U. 

A policy 1r (a,t) is measurable if a is measurable and the stop rule 

t: H ~ {1,2, ... ) is Borel measurable. For each x e F, let Il(x) be the 

collection of measurable policies available at x and define 

UM(x) = max {u(x), sup{u(1r): 1r e Il(x))}. 

The next result was proved by Strauch [18] for Borel problems and by Dubins and 

Sudderth [9, section 6) for analytic problems. The essential elements of the 

proof are also in Dellacherie and Meyer [7] and a generalization is in Maitra, 

Purves and Sudderth [11, Theorem 4.8]. 
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Theorem 2.2. If (F,r,u) is analytic, then U = UM and U is upper analytic. 

The proof of Theorem 2.1 will also rely on the definition by induction over 

the ordinals of a collection of functions which decrease to V. Define first an 

operator T which assigns to every bounded function w: F ~ R the bounded function 

Tw: F ~ R where, for x e F, 

(2.3) (Tw)(x) = sup w(~) 

and the supremum is over all policies~ available at x. Next define 

(2.4) 

and, for every positive ordinal e, let 

(2.5) 

Finally, set 

(2.6) Q 

Similarly defined systems of functions were considered by Dellacherie [6]. 

The next section presents a theorem of Moschovakis from effective, 

descriptive set theory. In section 4 the theorem is applied to show that 

Q = Q and Q is upper analytic. We show V ~Qin section 5 and VM ~Qin 
~1 

section 6. Obviously VM ~ V so it will follow that V=VM=Q. A characterization 

of Vis given in section 7 and section 8 has some remarks and open questions. 

3. A theorem of Moschovakis. The proof of Theorem 2.1 depends on a result from 

the theory of inductive definability. To formulate the result, let Z be a set 

and~ be a mapping from subsets of Z to subsets of Z. Say that~ is a monotone 

operator if, whenever E1 ~ E2 k Z, then ~(E1) ~ ~(E2). Define the iterates of~ 
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by transfinite induction as follows: 

(3.1) 
~ 

where e is any ordinal. It is easy to verify that~, the least fixed point of 

~, is given by U(~~=~ <~},where ~ is the least cardinal greater than the 

cardinality of Z. 

Suppose Z is a Borel set and~ is a monotone operator on Z. Say that~ 

respects coanalytic sets if, whenever Y is a Polish space and C is a coanalytic 

subset of Y x Z, then the set 

(3.2) * C 

is also coanalytic. 

((y,z) e Y X Z: z e ~(Cy)} 

(Here C = (z: (y,z) e C}.) y 

Theorem 3.1. Let~ be a monotone operator on a Borel set Zand suppose~ 

respects coanalytic sets. Then 

(a) ~~ is a coanalytic subset of Z, 

(b) ~~ 

Part (a) is a special case of a very general result of Moschovakis 

[14, 7C.8, p.414]. Part (b) is not stated explicitly in [14], but it can be 

deduced from results there as was done by Louveau [10]. A related result is in 

Dellacherie [4]. 

4. The function 0. The following theorem states the properties of Q we will 

need to prove Theorem 2.1. 
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Theorem 4.1. The function Q equals Q~, is upper analytic, and satisfies the 
1 

functional equation 

(4.1) Q T(uAQ). 

The proof will use several lemmas. The first concerns the operator T 

defined in (2.3). Notice that Tw differs from the return function U for the 

problem (F, r,w) only in that the maximum is not taken with the utility function 

w. Nevertheless it is not difficult to use Theorem 2.2 to establish an 

analogous result for Tw. 

Lemma 4.2. If w is bounded and upper analytic, then so is Tw and 

(Tw)(x) sup (w(~): ~ E Il(x)}, 

for every x E F. 

Proof: Consider the problem (F0 ,r0 ,u0) where F0 = F x (0,1}; u0 (x,O) inf w, 

uo(x,l) = w(x) for XE F; ro(x,O) = ro(x,l) = (~XG(l): ~er(x)} for XE F (i.e. 

the first coordinate moves according to a gamble available in rand the second 

moves to 1). It is easy to check that (Tw)(x) = u0 (x,O). The lemma then 

follows from Theorem 2.2. D 

Here is an immediate corollary of Lemma 4.2 and (2.5). 

Corollary 4.3. For O ~ e < ~1 , Qe is upper analytic. 

The previous lemma permits us to calculate Tw by taking the supremum just 

over the class of measurable policies~= (u,t). The next lemma records a nice 

result of Strauch [18, Theorem 2] which is then used to reduce the class even 
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further. 

Lemma 4.3. There is a countable set C of Borel measurable stop rules such that, 

for every Borel stop rule t and every probability measure u e ~(H), there exist 

t] = 1. 

For each x E F, let IT(x) be the collection of policies (u,t) in Il(x) such 

that t EC. 

Lemma 4.4. For w bounded and upper analytic and x E F, 

(Tw)(x) sup(w(w): w E Il(x)}. 

Proof: Let w = (a,t) e Il(x). By Lemma 4.3 there exist t EC such that t , t 
n n 

a-almost surely. So tn eventually equals t and, hence, w(ht), w(ht) a-almost 
n 

surely. Thus, by the dominated convergence theorem, 

w(u,t) = fw(ht)du lim fw(ht )du 
n n 

lim w(u,t ). 
n n 

D 

It is convenient to use Lemma 4.4 to define a new gambling houser for which 

the operator T corresponds to the one-day optimal return function 

(4.2) -1 (r w)(x) SUp(-yw: 1 E f(X)}. 

To definer, use 1 

for x e F, set 

uh~1 to denote the distribution of ht under u and, 

(4.3) - - -1 r(x) = (1: (3(a,t) e IT(x))(1 = uht )) . 

The next lemma records an obvious fact for future reference. 

Lemma 4.5. -1 The operators T and r agree on bounded, upper analytic w. 
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The last lemma of this section establishes that r is an analytic house. 

Enumerate the elements of C as r 1 ,r2 , .... 

Lemma 4.6. Fork= 1,2, ... , the set 

~ = ((x,1,u) e F x 0(F) x 0(H): a e ~(x), 1 

is analytic and so is the set ((x,1): ~ e r(x)}. 

Proof: That~ is analytic follows from the facts that ((x,a): a e ~(x)} is an 

analytic subset of F x 0(H) by a theorem of Dellacherie [5, Thtor~me 3] 

-1 (cf. also Sudderth [19, Theorem 2.1]) and that the mapping a~ ah is Borel. 
rk 

Hence, the projection of~ onto F x 0(F), namely the set 

(4.4) 

is also analytic. Consequently, 

((x,1) : ~ e r(x)} 

is analytic too. D 

Assume for the rest of this section that O ~ u ~ 1. Since u is bounded, 

there is no real loss of generality. Notice that the function Qe now takes 

values in the unit interval also. 

The completion of the proof of Theorem 4.1 will rely on Theorem 3.1. To 

apply the latter theorem, take I to be the unit interval, set Z equal to F x I 

and define~ on the power set of Z by 

(4.5) * C ~(E) = ((x,a) e Z: sup((~XA) (E n G) 1 e r(x)} ~ a} , 
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* where A is Lebesgue measure on I, (1 x A) is the outer measure associated with 

the product measure 1 x A, and G = ((x,a) : u(x) > a}. 

Lemma 4.7. ~ is monotone and respects coanalytic sets. 

Proof: It is trivial to check that~ is monotone. So let Y be a Polish space 

and let C be a coanalytic subset of Y x Z. * To see that the set C of (3.2) is 

coanalytic, define a Borel Markov kernel Kon @(F) x ~(Z) by K(1,B)=(1XA)(B). 

The mapping 

(y,1) ~ K(1,G n c;) 
is upper analytic since it is the composition of the Borel mapping 

(y,1) ~ 6(y) X K(1, .) 

from Y x @(F) into @(Y x Z) with the upper analytic mapping 

µ ~ µ((Y X G) n Cc) 

from @(Y x Z) into [0,1]. (cf. [l],[7] or [11]). Consequently, the set 

c* ((y,x,a): K(1,G n Cc)~ a for all 1 e r(x)} 
y 

is coanalytic. 0 

To see how the operator~ is related to the operator T, let w: F ~ [0,1] and 

define 

E(w) ((x,a): w(x) ~ a}. 

Lemma 4.8. If w is upper analytic, then ~(E(w)) 

Proof: For 1 e @(F) and E = E(w), 

(1 X A)(Ec n G) = fA((Ec n G) )1(dx) 
X 
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= f(wAu)(x)~(dx). 

The result follows from (4.5) and Lemma 4.5. 

Now notice that 

~0 = ~(¢) = {(x,a) 

{(x,a) 

~us a for all~ f r(x)} 

so that, by Corollary 4.3, Lemma 4.8, and induction 

(4.6) ~e = {(x,a) : Qe(x) s a} 

for O s e < ""1 · 

Proof of Theorem 4.1: Let w = inf Qe and E = E(w) 
e<""1 

By (4.6) and Theorem 3.l(b), 

(4.7) 

{(x,a): w(x) s a}. 

D 

Cl0 
So, by Theorem 3.l(a), ~ is coanalytic and, hence, w is upper analytic. Apply 

~ to (4.7) and use Lemma 4.8 to obtain 

{(x,a) 

= { (x,a) 

T(uAw)(x) s a) 

Q (x)Sa}. 
""1 

Thus Q is upper analytic. 
""1 

Apply Lemma 4.8 again, this time with w = Q , to 
""1 

see that T(uAQ ) = Q and, hence, Q = Q . 
""1 ""1 ""1 

5. The proof that VM ~ Q. To show that VM dominates the function Q, it 

suffices, by Theorem 4.1, to establish the following result. 

D 

Theorem 5.1. If L:F ~ R is bounded, upper analytic, and T(uAL) ~ L, then VM ~ L. 
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The idea of the proof is to construct, ·for a given x, a strategy u e ~(x) 

whose utility u(u) is almost as large as L(x). The construction will be based 

on two lemmas. 

To state the first lemma, define a measurable family of policies to be a 

mapping~ which assigns to each x a policy ~(x) = (a(x), t(x)) e Il(x) in such a 

way that t(x)(h) is jointly universally measurable in x and hand, for n ~ 0, 

a(x) (h
1

, ... ,h) is jointly universally measurable in x and (h1 , ... ,h ). Say n n n 

that the family~ E - conserves L if 

(uAL)(~(x)) ~ L(x) - e 

for all x. 

Lemma 5.2. For every e > 0, there is a measurable family of policies~ which 

E - conserves L. 

Proof: By Lemma 4.5 and the hypothesis T(uAL) ~ L, 

r1 (uAL) ~ L. 

So, by Lemma 6.4 of Dubins and Sudderth [9], there is a universally measurable 

mapping 1 from F to 0(F) such that 1(x) E r(x) and 1(x)(uAL) ~ L(x) - E for all 

x E F. By the definition of r, 1(x) corresponds to the distribution of ht(x) 

under some policy ~(x) in IT(x). It remains to select such a policy measurably. 

Let~ be the analytic set of Lemma 4.6 and use the Yankov-Von Neumann 

selection theorem (cf. [1] or [13]) to get a universally measurable mapping 

gk: F x 0(F) ~ 0(H) 
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such that 

(x,~,gk(x,~)) e ~ 

for every (x,~) in rk, the projection of~ onto F x 0(F). Then, for x e F, 

let k(x) be the least k such that (x,~(x)) erk and, fork= k(x), define 

t(x) = rk, u(x) = gk(x,~(x)). 

Now let ~(x) = (u(x), t(x) for each x. By construction, t(x)(h) is jointly 

universally measurable in x and h, and u is a universally measurable mapping 

from F to 0(H). It follows from Lemma 2.2 of [11] that the mappings 

u(x) (h
1

, ... ,h) can be chosen to be universally measurable. 
n n D 

Now fix xO e F and e > 0. To prove Theorem 5.1, it suffices to find u e 

(5.1) 

To obtain u, first choose eO, e1 , ... to be positive numbers such that ~en< e. 

Then, for each n, use Lemma 5.2 to get a measurable family of policies~ 
n 

(an, t) which e - conserves L. We will take u to be the sequential n n 

composition of the ~n starting from xO. 0 Intuitively, u follows u (x
O

) up to 

1 time t O(xO), then switches to a (ht (xO)) and so on. To be precise, first 
0 

define stop rules sO < s
1 

< ... by setting 

Plainly the s are universally measurable. Now let n 
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uk+l(h ) (h 1 , ... ,h) if sk(h) ~ n < sk+l(h), 
sk n-sk sk+ n 

where h = (h1 , ... ,hn, ... ). 

(The related notion of a "composite policy" is discussed in (8, p.22].) 

The next lemma will establish (5.1) and complete the proof of Theorem 5.1. 

Lemma 5.3. Let x E F, let ~0 ,ff1 , ... be measurable families of policies and let 

u be the sequential composition of the ~n at x. Assume e0 ,e1 , ... are positive 

numbers such that, for every n, ~ E -conserves L. Then, for every stop rules, n n 

there is a stop rule t ~ s such 

(5.2) u(u,t) ~ L(x) - ~E n 

Proof: The proof is by induction on the structure of h and the inductive 
s 

hypothesis is taken to include all strategies u constructed by sequential 

composition. 

If hs has structure one, thens= 1 ~ t 0 (x) and t=t0 (x) will satisfy (5.2). 

Suppose h has structure a and assume the inductive hypothesis for stop 
s 

rules s' for which h, has structure smaller than a. Define the stop rule t as 
s 

follows: If s(h) ~ t 0(h), let t(h) = t 0(h). If s(h) > t 0 (h), let s(h) be the 

conditional stop rule s[pt (h)] = s(h1 , ... ,ht] which is defined by 
0 0 

s(hl' ... ,ht , h1' ,h2', ... ) - to(h). 
0 

s(h)(h' > 

Now the structure of hs(h) is smaller than a (cf. (8, Theorem 2.9.3]). Apply 

the inductive hypothesis to the conditional strategy u(h) u[pt (h)], which is 
0 

the sequential composition of ff1 ,~2 , ... at ht, to obtain a stop rule 
0 

16 



t(h), depending only on (u(h), s(h)), such that t(h) ~ ;(h) and 

u(u(h), t(h)) ~ L(ht) - (e1 + e 2 + ... ). 
0 

Then set 

t(h) = t 0 (h) + t(h)(ht +l' ht +z,·· .). 
0 0 

Finally, condition on pt to get 
0 

u(a,t) = f u(ht )da + f u(u,t) da 
ssto O s>to 

~ f (uAL)(ht )da - (e1 + e2 + ... ) 
0 

= (uAL)(~0(x)) - (e 1 + e 2 + ... ) 

~ L(x) - (e0 + e1 + ... ). 

6. The proof that Q ~ V. 

It suffices to show that 

(6.1) VS Q ,, 
for every ordinal number r,. The proof is by induction over the ordinals. 

For every strategy a available at x, 

u(a) ~ s~p u(a,t) s Qo(x). 

Take the supremum over a to see that Vs Q0 . 

D 

Now assume (6.1) holds for every r, < e. Let e > 0 and let a be a strategy 

available at x. By a result of Dubins and Savage [8, Theorem 3.7.1), there is a 

stop rule t 0 such that for every stop rule t ~ t 0 , 

Thus, fort~ to, 

u(a,t) S (uAV)(a,t) + £(1 + 2supfuj) 

S T(uAh~f Qr,)+ £(1 + 2supjul), 
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= Qe(x) + e(l + 2suplul), 

where the second line is by the inductive assumption and the third by (2.5). 

Since e is arbitrary, u(u) is no larger than Qe(x). Consequently, V(x) is also 

bounded above by Qe(x). 

This completes the proof that Q ~ V. As mentioned in section 2, it now 

follows that V = VM = Q and Theorem 2.1 is immediate from Theorem 4.1. 

7. A characterization of V. No assumptions of measurability or countable 

additivity are needed for the results of this section. So let (F,r,u) be a 

classical gambling problem in the sense of [8]. Dubins and Savage [8, pp. 41-

42] characterized Vas the least excessive function w such that w(u) ~ u(u) for 

every strategy u available. Here is a new characterization. 

Theorem 7.1. The function Vis the largest, bounded function w: F ~ R such that 

(7.1) T(uAw) = w. 

The proof uses two lemmas which may have some independent interest. 

Lemma 7.2. The function Q is the largest, bounded function w: F ~ R such that 

(7.1) holds. 

Proof: It is clear from (2.5) that Qe ~ Q~ when€~~- Thus, if~ is the least 

F cardinal greater than the cardinality of R, then there is an ordinal a less 

than~ such that Q = Q 1 and Q +l = T(uAQ ). Therefore Q = Q is a solution 
a a+ a a a 

of (7.1). 

Now let w be any solution of (7.1). Then Q
0 Tu~ T(uAw) = w. And, if 
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Q ~ w for all~< e, then 
~ 

So Q 

Qe T(uAh~fQ~) ~ T(uAw) = w. 

inf Qe ~ w. 

Lemma 7.3. The functions Q and V are the same. 

D 

Outline of proof: This was proved above for measurable problems. However, the 

proof in section 6 that Q ~Vis completely general. Also, it is easy to adapt 

the proof in section 5 that VM ~ Q to show V ~Qin general. (Given x E F and 

e > 0, one constructs u available at x such that u(u) > Q(x) - e. The 

construction is similar to that in section 5, but somewhat simpler because there 

are no measurability concerns.) D 

The theorem is immediate from the two lemmas. A result related to Theorem 

7.1 is discussed by Dellacherie [4, Thtor~me 27]. 

8. Remarks. It seems likely that the results established here for a bounded 

utility function u are also true for u ~ 0. However, Theorem 2.1 cannot be 

proved for us 0. As was shown in [11], the statement that V = V is 
M 

undecidable for us O even in the special case when r is leavable. 

If u is bounded, then, for every strategy u, 

* u(u) = Ju du 

* where u (h) lim sup u(h) as was shown by Chen [3] and Sudderth [20]. (For n 

nonmeasurable u, the integral above was defined in Purves and Sudderth [17] .) 

Thus Theorem 2.1 says that, for a measurable problem, the supremum over u of the 

* integral of u with respect to u is the same whether taken over all u or only 
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measurable u available at x. * Does this remain true when u is replaced by an 

arbitrary bounded, Borel measurable function g? Some further information about 

this question is in [12]. 
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