685 research outputs found

    Multigrid solver for axisymmetrical 2D fluid equations

    Full text link
    We have developed an efficient algorithm for steady axisymmetrical 2D fluid equations. The algorithm employs multigrid method as well as standard implicit discretization schemes for systems of partial differential equations. Linearity of the multigrid method with respect to the number of grid points allowed us to use 256×256256\times 256 grid, where we could achieve solutions in several minutes. Time limitations due to nonlinearity of the system are partially avoided by using multi level grids(the initial solution on 256×256256\times 256 grid was extrapolated steady solution from 128×128128\times 128 grid which allowed using "long" integration time steps). The fluid solver may be used as the basis for hybrid codes for DC discharges.Comment: preliminary version; presented at 28 ICPIG, July 15-20, 2007, Prague, Czech Republi

    Multiscale Representations for Manifold-Valued Data

    Get PDF
    We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere S2S^2, the special orthogonal group SO(3)SO(3), the positive definite matrices SPD(n)SPD(n), and the Grassmann manifolds G(n,k)G(n,k). The representations are based on the deployment of Deslauriers--Dubuc and average-interpolating pyramids "in the tangent plane" of such manifolds, using the ExpExp and LogLog maps of those manifolds. The representations provide "wavelet coefficients" which can be thresholded, quantized, and scaled in much the same way as traditional wavelet coefficients. Tasks such as compression, noise removal, contrast enhancement, and stochastic simulation are facilitated by this representation. The approach applies to general manifolds but is particularly suited to the manifolds we consider, i.e., Riemannian symmetric spaces, such as Sn−1S^{n-1}, SO(n)SO(n), G(n,k)G(n,k), where the ExpExp and LogLog maps are effectively computable. Applications to manifold-valued data sources of a geometric nature (motion, orientation, diffusion) seem particularly immediate. A software toolbox, SymmLab, can reproduce the results discussed in this paper

    Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics

    Get PDF
    Ice-binding proteins that aid the survival of freeze-avoiding, cold-adapted organisms by inhibiting the growth of endogenous ice crystals are called antifreeze proteins (AFPs). The binding of AFPs to ice causes a separation between the melting point and the freezing point of the ice crystal (thermal hysteresis, TH). TH produced by hyperactive AFPs is an order of magnitude higher than that produced by a typical fish AFP. The basis for this difference in activity remains unclear. Here, we have compared the time dependence of TH activity for both hyperactive and moderately active AFPs using a custom-made nanolitre osmometer and a novel microfluidics system. We found that the TH activities of hyperactive AFPs were time-dependent, and that the TH activity of a moderate AFP was almost insensitive to time. Fluorescence microscopy measurement revealed that despite their higher TH activity, hyperactive AFPs from two insects (moth and beetle) took far longer to accumulate on the ice surface than did a moderately active fish AFP. An ice-binding protein from a bacterium that functions as an ice adhesin rather than as an antifreeze had intermediate TH properties. Nevertheless, the accumulation of this ice adhesion protein and the two hyperactive AFPs on the basal plane of ice is distinct and extensive, but not detectable for moderately active AFPs. Basal ice plane binding is the distinguishing feature of antifreeze hyperactivity, which is not strictly needed in fish that require only approximately 18C of TH. Here, we found a correlation between the accumulation kinetics of the hyperactive AFP at the basal plane and the time sensitivity of the measured TH

    Freezing and Melting Hysteresis Measurements in Solutions of Hyperactive Antifreeze Protein from an Antarctic Bacteria

    Get PDF
    Antifreeze proteins (AFPs) evolved in cold-adapted organisms and serve to protect them against freezing in cold conditions by arresting ice crystal growth. Recently, we have shown quantitatively that adsorption of AFPs not only prevents ice from growing but also from melting. This melting inhibition by AFPs, which results in superheated ice (Celik et al, PNAS 2010), is not a well-known phenomenon. Here we present our recent findings in which the Ca2+-dependent hyperactive AFP from Marinomonas primoryensis (MpAFP) clearly displays this property. Additionally, we found that an ice crystal that is initially stabilized and protected by this type of AFP can be overgrown and then melted back to the original crystal. This repeatable process is likely due to melting inhibition, and supports the idea that AFPs bind irreversibly to ice surfaces

    Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth

    Get PDF
    Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules

    Sorption-Desorption Behavior of Atrazine on Soils Subjected to Different Organic Long-Term Amendments

    Get PDF
    Sorption of atrazine on soils subjected to three different organic amendments was measured using a batch equilibrium technique. A higher K(F) value (2.20 kg(-1)(mg L(-1))(-)N) was obtained for soil fertilized with compost, which had a higher organic matter (OM) content. A correlation between the K(Foc) values and the percentage of aromatic carbon in OM was observed. The highest K(Foc) value was obtained for the soil with the highest aromatic content. Higher aromatic content results in higher hydrophobicity of OM, and hydrophobic interactions play a key role in binding of atrazine, On the other hand, the soil amended with farmyard manure had a higher content of carboxylic units, which could be responsible for hydrogen bonding between atrazine and OR Dominance of hydrogen bonds compared to hydrophobic interactions can be responsible for the lower desorption capacity observed with the farmyard manure soil, The stronger hydrogen bonding can reduce the leaching of atrazine into drinking water resources and runoff to rivers and other surface waters

    Metaphorical and interlingual translation in moving organizational practices across languages

    Get PDF
    Organizational scholars refer to translation as a metaphor in order to describe the transformation and movement of organizational practices across institutional contexts. However, they have paid relatively little attention to the challenges of moving organizational practices across language boundaries. In this conceptual paper, we theorize that when organizational practices move across contexts that differ not only in terms of institutions and cultures but also in terms of languages, translation becomes more than a metaphor; it turns into reverbalization of meaning in another language. We argue that the meeting of languages opens up a whole new arena for translator agency to unfold. Interlingual and metaphorical translation are two distinct but interrelated forms of translation that are mutually constitutive. We identify possible constellations between interlingual and metaphorical translation and illustrate agentic translation with published case examples. We also propose that interlingual translation is a key resource in the discursive constitution of multilingual organizations. This paper contributes to the stream of research in organization studies that has made translation a core aspect of its inquiry

    Virtual Northern Analysis of the Human Genome

    Get PDF
    BACKGROUND: We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. METHODOLOGY/PRINCIPAL FINDINGS: We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. CONCLUSIONS/SIGNIFICANCE: Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes

    Constructing global firms? National, transnational and neocolonial effects in international management consultancies

    Get PDF
    Drawing on an empirical study of four major international management consultancies, this article examines managerial efforts to construct ‘global’ organizations. We show how these efforts are undermined by inter-office conflicts over the staffing of client projects. We argue that such constraints cannot be adequately understood as an outcome of inappropriate organizational structures and incentives since this explanation ignores the important role of institutional contexts. In this vein, we outline and develop four different institutionalist lenses and apply them to the empirical findings. In so doing, we reveal the need to adopt a multi-dimensional institutionalist approach to the study of ‘global’ firms, one that can account for not only national effects but also transnational and neocolonial influences on these organizations
    • …
    corecore