58 research outputs found

    Controlling the balance between remote, pinhole, and van der Waals epitaxy of Heusler films on graphene/sapphire

    Full text link
    Remote epitaxy on monolayer graphene is promising for synthesis of highly lattice mismatched materials, exfoliation of free-standing membranes, and re-use of expensive substrates. However, clear experimental evidence of a remote mechanism remains elusive. In many cases, due to contaminants at the transferred graphene/substrate interface, alternative mechanisms such as pinhole-seeded lateral epitaxy or van der Waals epitaxy can explain the resulting exfoliatable single-crystalline films. Here, we find that growth of the Heusler compound GdPtSb on clean graphene on sapphire substrates produces a 30 degree rotated epitaxial superstructure that cannot be explained by pinhole or van der Waals epitaxy. With decreasing growth temperature the volume fraction of this 30 degree domain increases compared to the direct epitaxial 0 degree domain, which we attribute to slower surface diffusion at low temperature that favors remote epitaxy, compared to faster surface diffusion at high temperature that favors pinhole epitaxy. We further show that careful graphene/substrate annealing (T∌700∘CT\sim 700 ^\circ C) and consideration of the film/substrate vs film/graphene lattice mismatch are required to obtain epitaxy to the underlying substrate for a variety of other Heusler films, including LaPtSb and GdAuGe. The 30 degree rotated superstructure provides a possible experimental fingerprint of remote epitaxy since it is inconsistent with the leading alternative mechanisms

    A prioritization metric and modelling framework for fragmented saltmarsh patches restoration

    Get PDF
    Saltmarsh is a coastal ecosystem providing crucial ecosystem services, and its continued degradation and fragmentation has drawn increasing attention. However, how to effectively restore the connectivity between fragmented saltmarsh patches remains an open challenge. In this study, we developed a metric and modelling framework that prioritised saltmarsh patches for restoration. To demonstrate our approach, we simulated spatially explicit restoration schedules for Suaeda salsa patches at the Yellow River Delta National Nature Reserve, China, using three strategies: increasing-patch-area, increasing-number-of-patches and a benchmark unrestrictive prioritization strategy. We prioritised patches for restoration based on a number of widely used graph-theoretic landscape connectivity and metapopulation capacity metrics. Our simulation results suggested the rank connectivity-importance of extant patches was correlated within the group of graph-theoretic connectivity metrics or metapopulation capacity metrics, but unrelated across group. The unrestrictive prioritization strategy clearly outperformed the strategies of increasing-patch-area and increasing-number-of-patches which returned comparable connectivity restoration outcomes. For the more effective unrestrictive prioritization strategy, there were substantial differences in the simulated priority patches between metrics that considered stepping stone effects and those did not. While the former resulted in corridor-building priority patches that led to a more connected landscape throughout the region, the latter led to local clustering. We recommend use of the total probability of connectivity (PC) among the metrics we tested due to similarity of results to other metrics and its simulation efficiency. The proposed framework is readily applicable to prioritise areas for connectivity conservation and restoration in any monospecific ecosystem at the regional scale

    19F DOSY diffusion-NMR spectroscopy of fluoropolymers

    No full text
    International audienceA new pulse sequence for obtaining 19F detected DOSY (diffusion ordered spectroscopy) spectra of fluorinated moleculesis presented and used to study fluoropolymers based on vinylidene fluoride and chlorotrifluoroethylene. The performanceof 19F DOSY NMRexperiments (and in general any type ofNMR experiment) on fluoropolymers creates someunique complicationsthat very often prevent detection of important signals. Factors that create these complications include: (1) the presence of manyscalar couplings among 1H, 19F and 13C; (2) the large magnitudes of many 19F homonuclear couplings (especially 2JFF); (3) the large19F chemical shift range; and (4) the low solubility of these materials (which requires that experiments be performed at high temperatures).A systematic study of the various methods for collecting DOSY NMR data, and the adaptation of these methods to obtain19F detected DOSY data, has been performed using a mixture of low molecular weight, fluorinated model compounds. Thebest pulse sequences and optimal experimental conditions have been determined for obtaining 19F DOSY spectra. The optimumpulse sequences for acquiring 19F DOSY NMR data have been determined for various circumstances taking into account the spectraldispersion, number and magnitude of couplings present, and experimental temperature. Pulse sequences and experimentalparameters for optimizing these experiments for the study of fluoropolymers have been studied

    Mitochondrial Complex Abundance, Mitophagy Proteins, and Physical Performance in People With and Without Peripheral Artery Disease

    No full text
    Background Mitochondrial abnormalities exist in gastrocnemius muscle of people with peripheral artery disease (PAD). Whether abnormalities in mitochondrial biogenesis and autophagy are associated with greater ischemia or walking impairment in PAD is unknown. Methods and Results Protein markers of mitochondrial biogenesis and autophagy and the abundance of mitochondrial electron transport chain complexes were quantified in gastrocnemius muscle biopsies from people with and without PAD. Their 6‐minute walk distance and 4‐m gait speed were measured. Sixty‐seven participants (mean age 65.0 years [±6.8], 16 [23.9%] women, 48 [71.6%] Black) were enrolled, including 15 with moderate to severe PAD (ankle brachial index [ABI] <0.60), 29 with mild PAD (ABI 0.60–0.90), and 23 without PAD (ABI 1.00–1.40). Abundance of all electron transport chain complexes was significantly higher in participants with lower ABI (eg, complex I: 0.66, 0.45, 0.48 arbitrary units [AU], respectively, P trend=0.043). Lower ABI values were associated with a higher LC3A/B II‐to‐LC3A/B I (microtubule‐associated protein 1A/1B‐light chain 3) ratio (2.54, 2.31, 2.15 AU, respectively, P trend=0.017) and reduced abundance of the autophagy receptor p62 (0.71, 0.69, 0.80 AU, respectively, P trend=0.033). The abundance of each electron transport chain complex was positively and significantly associated with 6‐minute walk distance and 4‐m gait speed at usual and fast pace only among participants without PAD (eg, complex I: r=0.541, P=0.008; r=0.477, P=0.021; r=0.628, P=0.001, respectively). Conclusions These results suggest that accumulation of electron transport chain complexes in gastrocnemius muscle of people with PAD may be because of impaired mitophagy in the setting of ischemia. Findings are descriptive, and further study in larger sample sizes is needed
    • 

    corecore