604 research outputs found
Multicomponent fractional quantum Hall effect in graphene
We report observation of the fractional quantum Hall effect (FQHE) in high
mobility multi-terminal graphene devices, fabricated on a single crystal boron
nitride substrate. We observe an unexpected hierarchy in the emergent FQHE
states that may be explained by strongly interacting composite Fermions with
full SU(4) symmetric underlying degrees of freedom. The FQHE gaps are measured
from temperature dependent transport to be up 10 times larger than in any other
semiconductor system. The remarkable strength and unusual hierarcy of the FQHE
described here provides a unique opportunity to probe correlated behavior in
the presence of expanded quantum degrees of freedom.Comment: 5 pages, 3 figure
Spin and valley quantum Hall ferromagnetism in graphene
In a graphene Landau level (LL), strong Coulomb interactions and the fourfold
spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At
partial filling, exchange interactions can spontaneously break this symmetry,
manifesting as additional integer quantum Hall plateaus outside the normal
sequence. Here we report the observation of a large number of these quantum
Hall isospin ferromagnetic (QHIFM) states, which we classify according to their
real spin structure using temperature-dependent tilted field magnetotransport.
The large measured activation gaps confirm the Coulomb origin of the broken
symmetry states, but the order is strongly dependent on LL index. In the high
energy LLs, the Zeeman effect is the dominant aligning field, leading to real
spin ferromagnets with Skyrmionic excitations at half filling, whereas in the
`relativistic' zero energy LL, lattice scale anisotropies drive the system to a
spin unpolarized state, likely a charge- or spin-density wave.Comment: Supplementary information available at http://pico.phys.columbia.ed
Distortions of Subjective Time Perception Within and Across Senses
Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.
Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.
Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions
Breast cancer detection: radiologists’ performance using mammography with and without automated whole-breast ultrasound
ObjectiveRadiologist reader performance for breast cancer detection using mammography plus automated whole-breast ultrasound (AWBU) was compared with mammography alone.MethodsScreenings for non-palpable breast malignancies in women with radiographically dense breasts with contemporaneous mammograms and AWBU were reviewed by 12 radiologists blinded to the diagnoses; half the studies were abnormal. Readers first reviewed the 102 mammograms. The American College of Radiology (ACR) Breast Imaging Reporting and Data System (BIRADS) and Digital Mammographic Imaging Screening Trial (DMIST) likelihood ratings were recorded with location information for identified abnormalities. Readers then reviewed the mammograms and AWBU with knowledge of previous mammogram-only evaluation. We compared reader performance across screening techniques using absolute callback, areas under the curve (AUC), and figure of merit (FOM).ResultsTrue positivity of cancer detection increased 63%, with only a 4% decrease in true negativity. Reader-averaged AUC was higher for mammography plus AWBU compared with mammography alone by BIRADS (0.808 versus 0.701) and likelihood scores (0.810 versus 0.703). Similarly, FOM was higher for mammography plus AWBU compared with mammography alone by BIRADS (0.786 versus 0.613) and likelihood scores (0.791 versus 0.614).ConclusionAdding AWBU to mammography improved callback rates, accuracy of breast cancer detection, and confidence in callbacks for dense-breasted women
Artificial graphene as a tunable Dirac material
Artificial honeycomb lattices offer a tunable platform to study massless
Dirac quasiparticles and their topological and correlated phases. Here we
review recent progress in the design and fabrication of such synthetic
structures focusing on nanopatterning of two-dimensional electron gases in
semiconductors, molecule-by-molecule assembly by scanning probe methods, and
optical trapping of ultracold atoms in crystals of light. We also discuss
photonic crystals with Dirac cone dispersion and topologically protected edge
states. We emphasize how the interplay between single-particle band structure
engineering and cooperative effects leads to spectacular manifestations in
tunneling and optical spectroscopies.Comment: Review article, 14 pages, 5 figures, 112 Reference
Male circumcision and penile cancer: a systematic review and meta-analysis
OBJECTIVE: We systematically reviewed the evidence of an association between male circumcision and penile cancer. METHODS: Databases were searched using keywords and text terms for the epidemiology of penile cancer. Random effects meta-analyses were used to calculate summary odds ratios (ORs) and 95% confidence intervals (CI). RESULTS: We identified eight papers which evaluated the association of circumcision with penile cancer, of which seven were case-control studies. There was a strong protective effect of childhood/adolescent circumcision on invasive penile cancer (OR = 0.33; 95% CI 0.13-0.83; 3 studies). In two studies, the protective effect of childhood/adolescent circumcision on invasive cancer no longer persisted when analyses were restricted to boys with no history of phimosis. In contrast, there was some evidence that circumcision in adulthood was associated with an increased risk of invasive penile cancer (summary OR = 2.71; 95% CI 0.93-7.94; 3 studies). There was little evidence for an association of penile intra-epithelial neoplasia and in situ penile cancer with circumcision performed at any age. CONCLUSIONS: Men circumcised in childhood/adolescence are at substantially reduced risk of invasive penile cancer, and this effect could be mediated partly through an effect on phimosis. Expansion of circumcision services in sub-Saharan Africa as an HIV prevention strategy may additionally reduce penile cancer risk
Characterization of Side Populations in HNSCC: Highly Invasive, Chemoresistant and Abnormal Wnt Signaling
Side Population (SP) cells, a subset of Hoechst-low cells, are enriched with stem cells. Originally, SP cells were isolated from bone marrow but recently have been found in various solid tumors and cancer cell lines that are clonogenic in vitro and tumorigenic in vivo. In this study, SP cells from lymph node metastatic head and neck squamous cell carcinoma (HNSCC) cell lines were examined using flow cytometry and Hoechst 3342 efflux assay. We found that highly metastatic HNSCC cell lines M3a2 and M4e contained more SP cells compared to the low metastatic parental HNSCC cell line 686LN. SP cells in HNSCC were highly invasive in vitro and tumorigenic in vivo compared to non-SP cells. Furthermore, SP cells highly expressed ABCG2 and were chemoresistant to Bortezomib and etoposide. Importantly, we found that SP cells in HNSCC had abnormal activation of Wnt/β-catenin signaling as compared to non-SP cells. Together, these findings indicate that SP cells might be a major driving force of head and neck tumor formation and metastasis. The Wnt/β-catenin signaling pathway may be an important target for eliminating cancer stem cells in HNSCC
Australian Food Exporters and the European Legal Environment
The European Union (EU) is Australia's largest trading partner, and largest outside investor. With around 370 million consumers, trading rules that have been harmonised and greatly simplified, and mostly low tariff rates, the market is very attractive to exporters from all over the world. Given the rapid and on-going changes in the EU as integration proceeds, a knowledge of its governing and internal law, and the international trade law which relates to it appears to be a prerequisite for successful exporting by Australian firms. Most textbooks suggest that export strategies (e.g., pricing, distribution) should be based on a well-planned legal strategy, and the primary instrument of legal strategy is the contract (e.g., Fox, 1992). As food exporters are especially vulnerable to risk, given the perishable nature of their products, one would expect that Australian food exporters would be particularly sensitive to the legal environment of the EU. The aim of this paper is to examine the place of the legal environment in Australia-EU business relationships, focussing particularly on an empirical study of food exporters
Early In Vitro Differentiation of Mouse Definitive Endoderm Is Not Correlated with Progressive Maturation of Nuclear DNA Methylation Patterns
The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications
Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidatesfor targeted treatment
Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors
- …