6,473 research outputs found

    Room temperature GW bar detector with opto-mechanical readout

    Full text link
    We present the full implementation of a room-temperature gravitational wave bar detector equipped with an opto-mechanical readout. The mechanical vibrations are read by a Fabry--Perot interferometer whose length changes are compared with a stable reference optical cavity by means of a resonant laser. The detector performance is completely characterized in terms of spectral sensitivity and statistical properties of the fluctuations in the system output signal. The new kind of readout technique allows for wide-band detection sensitivity and we can accurately test the model of the coupled oscillators for thermal noise. Our results are very promising in view of cryogenic operation and represent an important step towards significant improvements in the performance of massive gravitational wave detectors.Comment: 7 figures, submitted to Phys. Rev.

    Experimental measurement of photothermal effect in Fabry-Perot cavities

    Get PDF
    We report the experimental observation of the photothermal effect. The measurements are performed by modulating the laser power absorbed by the mirrors of two high-finesse Fabry-Perot cavities. The results are very well described by a recently proposed theoretical model [M. Cerdonio, L. Conti, A. Heidmann and M. Pinard, Phys. Rev. D 63 (2001) 082003], confirming the correctness of such calculations. Our observations and quantitative characterization of the photothermal effect demonstrate its critical importance for high sensitivity interferometric displacement measurements, as those necessary for gravitational wave detection.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Evidence for a physically bound third component in HD 150136

    Full text link
    Context. HD150136 is one of the nearest systems harbouring an O3 star. Although this system was for a long time considered as binary, more recent investigations have suggested the possible existence of a third component. Aims. We present a detailed analysis of HD 150136 to confirm the triple nature of this system. In addition, we investigate the physical properties of the individual components of this system. Methods. We analysed high-resolution, high signal-to-noise data collected through multi-epoch runs spread over ten years. We applied a disentangling program to refine the radial velocities and to obtain the individual spectra of each star. With the radial velocities, we computed the orbital solution of the inner system, and we describe the main properties of the orbit of the outer star such as the preliminary mass ratio, the eccentricity, and the orbital-period range. With the individual spectra, we determined the stellar parameters of each star by means of the CMFGEN atmosphere code. Results. We offer clear evidence that HD 150136 is a triple system composed of an O3V((f\ast))-3.5V((f+)), an O5.5-6V((f)), and an O6.5-7V((f)) star. The three stars are between 0-3 Myr old. We derive dynamical masses of about 64, 40, and 35 Msun for the primary, the secondary and the third components by assuming an inclination of 49{\deg}. It currently corresponds to one of the most massive systems in our galaxy. The third star moves with a period in the range of 2950 to 5500 d on an outer orbit with an eccentricity of at least 0.3. This discovery makes HD 150136 the first confirmed triple system with an O3 primary star. However, because of the long orbital period, our dataset is not sufficient to constrain the orbital solution of the tertiary component with high accuracy.Comment: 13 pages, 11 figures, accepted at A&

    Estimation of traf- fic matrices in the presence of long memory traffic

    Get PDF
    The estimation of traffic matrices in a communications network on the basis of a set of traffic measurements on the network links is a well-known problem, for which a number of solutions have been proposed when the traffic does not show dependence over time, as in the case of the Poisson process. However, extensive measurements campaigns conducted on IP networks have shown that the traffic exhibits long range dependence. Here a method is proposed for the estimation of traffic matrices in the case of long range dependence, and its theoretical properties are studied. Its merits are then evaluated via a simulation study. Finally, an application to real data is provided

    High-spectral-purity laser system for the AURIGA detector optical readout

    Get PDF
    We describe a low-frequency-noise laser system conceived for the readout of small mechanical vibrations. The system consists of a Nd:YAG source stabilized to a high-finesse Fabry–Perot cavity and achieves the best performance in the range 1–10 kHz with a minimum residual noise of 4×10-3 Hz/Hz. We perform an extended characterization of the frequency stability by means of an independent optical cavity and we also measure the residual fluctuations after transmission through an optical fiber. Our apparatus is optimized for use in an optical readout for the gravitational wave detector AURIGA, where a laser system with the characteristics reported here will allow an improvement of one order of magnitude in the detector sensitivity

    A rank-and-compare algorithm to detect abnormally low bids in procurement auctions

    Get PDF
    3noDetecting abnormally low bids in procurement auctions is a recognized problem, since their acceptance could result in the winner not being able to provide the service or work awarded by the auction, which is a significant risk for the auctioneer. A rank-and-compare algorithm is considered to detect such anomalous bids and help auctioneers in achieving an effective rejection decision. Analytical expressions and simulation results are provided for the detection probability, as well as for the false alarm probability. The suggested range of application of the detection algorithm leaves out the cases of many tenderers (more than 20) and quite dispersed bids (coefficient of variation larger than 0.15). An increase in the number of tenderers leads to contrasting effects, since both the false alarm probability and the detection probability are reduced. If the bids are spread over a large range, we have instead a double negative effect, with more false alarms and less detections. The presence of multiple anomalous bids worsens the performance of the algorithm as well. On the other hand, the method is quite robust to the presence of courtesy bids.reservedmixedL. De Giovanni; P. L. Conti; M. NaldiDE GIOVANNI, Livia; P. L., Conti; M., Nald

    Harmonic damped oscillators with feedback. A Langevin study

    Full text link
    We consider a system in direct contact with a thermal reservoir and which, if left unperturbed, is well described by a memory-less equilibrium Langevin equation of the second order in the time coordinate. In such conditions, the strength of the noise fluctuations is set by the damping factor, in accordance with the Fluctuation and Dissipation theorem. We study the system when it is subject to a feedback mechanism, by modifying the Langevin equation accordingly. Memory terms now arise in the time evolution, which we study in a non-equilibrium steady state. Two types of feedback schemes are considered, one focusing on time shifts and one on phase shifts, and for both cases we evaluate the power spectrum of the system's fluctuations. Our analysis finds application in feedback cooled oscillators, such as the Gravitational Wave detector AURIGA.Comment: 17 page

    Time-dependent Nonlinear Optical Susceptibility of an Out-of-Equilibrium Soft Material

    Full text link
    We investigate the time-dependent nonlinear optical absorption of a clay dispersion (Laponite) in organic dye (Rhodamine B) water solution displaying liquid-arrested state transition. Specifically, we determine the characteristic time τD\tau_D of the nonlinear susceptibility build-up due as to the Soret effect. By comparing τD\tau_D with the relaxation time provided by standard dynamic light scattering measurements we report on the decoupling of the two collective diffusion times at the two very different length scales during the aging of the out-of-equilibrium system. With this demonstration experiment we also show the potentiality of nonlinear optics measurements in the study of the late stage of arrest in soft materials

    Quasi-Lie schemes and Emden--Fowler equations

    Full text link
    The recently developed theory of quasi-Lie schemes is studied and applied to investigate several equations of Emden type and a scheme to deal with them and some of their generalisations is given. As a first result we obtain t-dependent constants of the motion for particular instances of Emden equations by means of some of their particular solutions. Previously known results are recovered from this new perspective. Finally some t-dependent constants of the motion for equations of Emden type satisfying certain conditions are recovered

    Early-type stars in the young open cluster NGC 2244 and in the Mon OB2 association I. The multiplicity of O-type stars

    Full text link
    Aims. We present the results obtained from a long-term spectroscopic campaign devoted to the multiplicity of O-type stars in the young open cluster NGC2244 and in the Mon OB2 association. Methods. Our spectroscopic monitoring was performed over several years, allowing us to probe different time-scales. For each star, several spectral diagnostic tools are applied, in order to search for line shifts and profile variations. We also measure the projected rotational velocity and revisit the spectral classification. Results. In our sample, several stars were previously considered as spectroscopic binaries, though only a few scattered observations were available. Our results now reveal a more complex situation. Our study identifies two new spectroscopic binaries (HD46149 in NGC2244 and HD46573 in MonOB2). The first object is a long-period double-lined spectroscopic binary, though the exact value of its period remains uncertain and the second object is classified as an SB1 system with a period of about 10.67 days but the time series of our observations do not enable us to derive a unique orbital solution for this system. We also classify another star as variable in radial velocity (HD46150) and we detect line profile variations in two rapid rotators (HD46056 and HD46485). Conclusions. This spectroscopic investigation places a firm lower limit (17%) on the binary fraction of O-stars in NGC2244 and reveals the lack of short-period O+OB systems in this cluster. In addition, a comparison of these new results with two other well-studied clusters (NGC6231 and IC1805) puts forward possible hints of a relation between stellar density and binarity, which could provide constraints on the theories about the formation and early evolution of hot stars.Comment: 14 pages, 10 figures, 9 table
    corecore