2,097 research outputs found

    Improving the Excited Nucleon Spectrum in Hard-Wall AdS/QCD

    Full text link
    We show that the nucleon spectrum in a hard-wall AdS/QCD model can be improved by use of a relatively large IR cutoff. All of the spin-1/2 nucleon masses listed in PDG can be fit quite well within 11%. The average error is remarkably only 4.66%.Comment: 11 pages, 2 figures. v2: references added. v3: add a section about the pion-nucleon coupling, published versio

    Consequences of the partial restoration of chiral symmetry in AdS/QCD

    Full text link
    Chiral symmetry is an essential concept in understanding QCD at low energy. We treat the chiral condensate, which measures the spontaneous breaking of chiral symmetry, as a free parameter to investigate the effect of partially restored chiral symmetry on the physical quantities in the frame work of an AdS/QCD model. We observe an interesting scaling behavior among the nucleon mass, pion decay constant and chiral condensate. We propose a phenomenological way to introduce the temperature dependence of a physical quantity in the AdS/QCD model with the thermal AdS metric.Comment: 11 pages, 6 figure

    Heavy quarkonium in a holographic QCD model

    Get PDF
    Encouraged by recent developments in AdS/QCD models for light quark system, we study heavy quarkonium in the framework of the AdS/QCD models. We calculate the masses of ccˉc\bar c vector meson states using the AdS/QCD models at zero and at finite temperature. Among the models adopted in this work, we find that the soft wall model describes the low-lying heavy quark meson states at zero temperature relatively well. At finite temperature, we observe that once the bound state is above TcT_c, its mass will increase with temperature until it dissociates at a temperature of around 494MeV494 {\rm MeV}. It is shown that the dissociation temperature is fixed by the infrared cutoff of the models. The present model serves as a unified non perturbative model to investigate the properties of bound quarkonium states above TcT_c.Comment: 9 pages, 1 figure, minor revision, to appear in phys. Rev.

    Holographic Electroweak Symmetry Breaking from D-branes

    Full text link
    We observe several interesting phenomena in a technicolor-like model of electroweak symmetry breaking based on the D4-D8-D8bar system of Sakai and Sugimoto. The benefit of holographic models based on D-brane configurations is that both sides of the holographic duality are well understood. We find that the lightest technicolor resonances contribute negatively to the Peskin-Takeuchi S-parameter, but heavy resonances do not decouple and lead generically to large, positive values of S, consistent with standard estimates in QCD-like theories. We study how the S parameter and the masses and decay constants of the vector and axial-vector techni-resonances vary over a one-parameter family of D8-brane configurations. We discuss possibilities for the consistent truncation of the theory to the first few resonances and suggest some generic predictions of stringy holographic technicolor models.Comment: REVTeX, 25 pages, 8 eps figures, version published in PR

    Generalised bottom-up holography and walking technicolour

    Full text link
    In extradimensional holographic approaches the flavour symmetry is gauged in the bulk, that is, treated as a local symmetry. Imposing such a local symmetry admits fewer terms coupling the (axial) vectors and (pseudo)scalars than if a global symmetry is imposed. The latter is the case in standard low-energy effective Lagrangians. Here we incorporate these additional, a priori only globally invariant terms into a holographic treatment by means of a Stueckelberg completion and alternatively by means of a Legendre transformation. This work was motivated by our investigations concerning dynamical electroweak symmetry breaking by walking technicolour and we apply our findings to these theories.Comment: 12 pages, 5 figure

    Baryon Number-Induced Chern-Simons Couplings of Vector and Axial-Vector Mesons in Holographic QCD

    Full text link
    We show that holographic models of QCD predict the presence of a Chern-Simons coupling between vector and axial-vector mesons at finite baryon density. In the AdS/CFT dictionary, the coefficient of this coupling is proportional to the baryon number density, and is fixed uniquely in the five-dimensional holographic dual by anomalies in the flavor currents. For the lightest mesons, the coupling mixes transverse ρ\rho and a1a_1 polarization states. At sufficiently large baryon number densities, it produces an instability, which causes the ρ\rho and a1a_1 mesons to condense in a state breaking both rotational and translational invariance.Comment: 4 page

    Geometric approach to condensates in holographic QCD

    Get PDF
    An SU(Nf)xSU(Nf) Yang-Mills theory on an extra-dimensional interval is considered, with appropriate symmetry-breaking boundary conditions on the IR brane. UV-brane to UV-brane correlators at high energies are compared with the OPE of two-point functions of QCD quark currents. Condensates correspond to departure from AdS of the (different) metrics felt by vector and axial combinations, away from the UV brane. Their effect on hadronic observables is studied: the extracted condensates agree with the signs and orders of magnitude expected from QCD.Comment: References added: published version plus misprints correction

    Pion distribution amplitude from holographic QCD and the electromagnetic form factor F_pi(Q2)

    Full text link
    The holographic QCD prediction for the pion distribution amplitude (DA) ϕhol(u)\phi_{hol}(u) is used to compute the pion spacelike electromagnetic form factor Fπ(Q2)F_{\pi}(Q^2) within the QCD light-cone sum rule method. In calculations the pion's renormalon-based model twist-4 DA, as well as the asymptotic twist-4 DA are employed. Obtained theoretical predictions are compared with experimental data and with results of the holographic QCD

    Structure of Vector Mesons in Holographic Model with Linear Confinement

    Full text link
    Wave functions and form factors of vector mesons are investigated in the holographic dual model of QCD with a smooth oscillator-like wall. We introduce wave functions conjugate to solutions of the 5D equation of motion and develop a formalism based on these wave functions, which are very similar to those of a quantum-mechanical oscillator. For the lowest bound state (rho-meson), we show that, in this model, the basic elastic form factor exhibits the perfect vector meson dominance, i.e., it is given by the rho-pole contribution alone. The electric radius of the rho-meson is calculated, _C = 0.655 fm^2, which is larger than in case of the hard-wall cutoff. The squared radii of higher excited states are found to increase logarithmically rather than linearly with the radial excitation number. We calculate the coupling constant f_rho and find that the experimental value is closer to that calculated in the hard-wall model.Comment: 8 pages, RevTex4, references, comments and a figure added. Some terminoloy change
    corecore