19,619 research outputs found

    Tornadoes in a Microchannel

    Full text link
    In non-dilute colloidal suspensions, gradients in particle volume fraction result in gradients in electrical conductivity and permittivity. An externally applied electric field couples with gradients in electrical conductivity and permittivity and, under some conditions, can result in electric body forces that drive the flow unstable forming vortices. The experiments are conducted in square 200 micron PDMS microfluidic channels. Colloidal suspensions consisted of 0.01 volume fraction of 2 or 3 micron diameter polystyrene particles in 0.1 mM Phosphate buffer and 409 mM sucrose to match particle-solution density. AC electric fields at 20 Hz and strength of 430 to 600 V/cm were used. We present a fluid dynamics video that shows the evolution of the particle aggregation and formation of vortical flow. Upon application of the field particles aggregate forming particle chains and three dimensional structures. These particles form rotating bands where the axis of rotation varies with time and can collide with other rotating bands forming increasingly larger bands. Some groups become vortices with a stable axis of rotation. Other phenomena showed include counter rotating vortices, colliding vortices, and non-rotating particle bands with internal waves

    Collective electromagnetic relaxation in crystals of molecular magnets

    Full text link
    We study the magnetization reversal and electromagnetic radiation due to collective Landau-Zener relaxation in a crystal of molecular magnets. Analytical and numerical solutions for the time dependence of the relaxation process are obtained. The power of the radiation and the total emitted energy are computed as functions of the crystal parameters and the field sweep rate.Comment: 7 pages, 9 figure

    Towards the solution of the relativistic gravitational radiation reaction problem for binary black holes

    Get PDF
    Here we present the results of applying the generalized Riemann zeta-function regularization method to the gravitational radiation reaction problem. We analyze in detail the headon collision of two nonspinning black holes with extreme mass ratio. The resulting reaction force on the smaller hole is repulsive. We discuss the possible extensions of these method to generic orbits and spinning black holes. The determination of corrected trajectories allows to add second perturbative corrections with the consequent increase in the accuracy of computed waveforms.Comment: Contribution to the Proceedings of the 3rd LISA Symposiu

    Quantum pump effect in one-dimensional systems of Dirac fermions

    Full text link
    We investigate the behavior of the directed current in one-dimensional systems of Dirac fermions driven by local periodic potentials in the forward as well in backscattering channels. We treat the problem with Keldysh non-equilibrium Green's function formalism. We present the exact solution for the case of an infinite wire and show that in this case the dc current vanishes identically. We also investigate a confined system consistent in an annular arrangement coupled to a particle reservoir. We present a perturbative treatment that allows for the analytical expressions of the dc current in the lowest order of the amplitudes of the potential. We also present results obtained from the exact numerical solution of the problem.Comment: 8 pages, 5 figure

    Fast model predictive control for hydrogen outflow regulation in ethanol steam reformers

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In the recent years, the presence of alternative power sources, such as solar panels, wind farms, hydropumps and hydrogen-based devices, has significantly increased. The reasons of this trend are clear: contributing to a reduction of gas emissions and dependency on fossil fuels. Hydrogen-based devices are of particular interest due to their significant efficiency and reliability. Reforming technologies are among the most economic and efficient ways of producing hydrogen. In this paper we consider the regulation of hydrogen outflow in an ethanol steam reformer (ESR). In particular, a fast model predictive control approach based on a finite step response model of the process is proposed. Simulations performed using a more realistic non-linear model show the effectiveness of the proposed approach in driving the ESR to different operating conditions while fulfilling input and output constraints.Peer ReviewedPostprint (author's final draft

    Medium-induced multi-photon radiation

    Full text link
    We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Moli\`{e}re limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.Comment: 5 pages, 1 figure. Proceedings of Hot Quarks 2010, La Londe Les Maures, Franc

    Quantum dynamics of a nanomagnet in a rotating field

    Full text link
    Quantum dynamics of a two-state spin system in a rotating magnetic field has been studied. Analytical and numerical results for the transition probability have been obtained along the lines of the Landau-Zener-Stueckelberg theory. The effect of various kinds of noise on the evolution of the system has been analyzed.Comment: 7 pages, 7 figure

    Coarse--graining, fixed points, and scaling in a large population of neurons

    Full text link
    We develop a phenomenological coarse--graining procedure for activity in a large network of neurons, and apply this to recordings from a population of 1000+ cells in the hippocampus. Distributions of coarse--grained variables seem to approach a fixed non--Gaussian form, and we see evidence of scaling in both static and dynamic quantities. These results suggest that the collective behavior of the network is described by a non--trivial fixed point
    corecore