144 research outputs found

    Architectural and genetic characterization of Hydrangea aspera subsp. aspera Kawakami group, H. aspera subsp. sargentiana and their hybrids

    Get PDF
    Hydrangea macrophylla (Thunb.) Ser. and H. paniculata Sieb. are the two most economically important species within the genus Hydrangea, and have been used as ornamental garden plants for a long time. However, other species such as H. aspera D. Don are of horticultural interest, particularly for the color of their inflorescences and plant shape. This species is composed of four sub-species and has previously been characterized both genetically and morphologically. The previous morphological characterization was qualitative, but was based mainly on leaf and inflorescence parameters outlined by UPOV, and provided little information about plant shape. To better characterize the shape of H. aspera, an architectural analysis was applied to the two most distantly related sub-species at the cytogenetic level: subsp. sargentiana (Redher) E.M. McClint. (clone 188) and subsp. aspera Kawakami group (clone 352). This method made it possible to reveal significant differences between these clones, both at the axis and the growth unit (GU) scale, in agreement with the high level of genetic differentiation (Jaccard dissimilarity index equal to 0.97) revealed between the two clones by Inter simple sequence repeats markers. Because this method is difficult to apply to a large population of individuals, a qualitative architectural characterization was tested on ten progenies derived from hybridization of the two clones, on the basis of their most discriminating architectural components. The hybrid nature of the progeny was confirmed by the architectural analysis. The architectural components of the hybrids are therefore a combination of those of the parents, with a predominance of clone 352, the female parent. Architectural differences between hybrids were clearly revealed by the length of the first vegetative GU (VGU1), the presence or the absence of VGU2 and the length of the floral GU of the A2 axis, and GU branching, allowing us to define five architectural profiles. These differences are supported by the average Jaccard dissimilarity index (0.33). This method, based on a qualitative description of the main architectural components of the plant, proved to be useful for characterizing the shape of H. aspera subsp. sargentiana, and subsp. aspera Kawakami group, and their hybrids. It could be extended to other sub-species of H. aspera and to their respective hybrids, providing an efficient tool for better characterizing genetic resources of H. aspera

    Pollen viability and meiotic behaviour in intraspecific hybrids of Hydrangea aspera subsp. aspera Kawakami group x subsp. sargentiana

    Get PDF
    Pollen viability and male meiosis in intraspecific hybrids of Hydrangea aspera subsp. aspera Kawakami group (2n = 2x = 36) and subsp. sargentiana (2n = 2x = 34) were investigated. Although it had been assumed that they were sterile, pollen viability was observed; it varied from 2.5% to 12.1%. The production of gametes with different chromosome numbers was implied by the analysis of the dispersion of the diameter distribution of pollen grains. Analysis of male meiosis made it possible to identify the origins with two major categories of meiotic aberrations: abnormal chromosome distribution (early chromosome migration at metaphase, lagging chromosomes at anaphase, micronuclei at telophase), leading to the formation of unbalanced tetrads and/or ones with supernumerary microspores; and abnormal spindle orientation in metaphase II (tripolar, fused and parallel spindles), leading to the formation of dyads or triads. The mode of 2n pollen formation is of the First Division Restitution type. The high level of parental heterozygosity that is normally associated with them should facilitate the transfer of a polygenic trait in breeding programme

    Identification of relevant morphological, topological and geometrical variables to characterize the architecture of rose bushes in relation to plant shape

    Get PDF
    Plant shape is a major component of the visual quality of ornamental plants. It is the result of their architectural construction. It can be analyzed by breaking down the plant into entities (axis, metamer) that can be characterized morphologically, topologically and geometrically. Eight bush rose cultivars were selected for their contrasting shapes (from upright to spreading) and their architecture was digitized at two scales, the plant and the axis, differentiating between short and long axes. Thirty-five variables were measured. Measurement acquisition is nevertheless tedious and time-consuming and not really compatible with an analysis involving a large number of individuals. To diminish these constraints, our approach aimed at reducing the number of variables measured, limiting ourselves to the ones most relevant for describing the architecture. A selection of variables was made using the following criteria: to represent the different categories of variables describing the plant architecture; to explain the variability observed; to present the weakest correlation between them. Seven variables were selected: at the plant scale, the number of determined axes, the number of long axes of order 3 and the branching order number; at the long axis scale, the number of metamers and the length of the axis; and at the short axis scale, the basal diameter of the axis and the branching angle of the cord in relation to the vertical axis. Four architectural profiles were differentiated based on these seven variables. Moreover, a high correlation was revealed between some of these architectural variables and a shape descriptor

    Quantitative trait loci for flowering time and inflorescence architecture in rose

    Get PDF
    The pattern of development of the inflorescence is an important characteristic in ornamental plants, where the economic value is in the flower. The genetic determinism of inflorescence architecture is poorly understood, especially in woody perennial plants with long life cycles. Our objective was to study the genetic determinism of this characteristic in rose. The genetic architectures of 10 traits associated with the developmental timing and architecture of the inflorescence, and with flower production were investigated in a F 1 diploid garden rose population, based on intensive measurements of phenological and morphological traits in a field. There were substantial genetic variations in inflorescence development traits, with broad-sense heritabilities ranging from 0.82 to 0.93. Genotypic correlations were significant for most (87%) pairs of traits, suggesting either pleiotropy or tight linkage among loci. However, non-significant and low correlations between some pairs of traits revealed two independent developmental pathways controlling inflorescence architecture: (1) the production of inflorescence nodes increased the number of branches and the production of flowers; (2) internode elongation connected with frequent branching increased the number of branches and the production of flowers. QTL mapping identified six common QTL regions (cQTL) for inflorescence developmental traits. A QTL for flowering time and many inflorescence traits were mapped to the same cQTL. Several candidate genes that are known to control inflorescence developmental traits and gibberellin signaling in Arabidopsis thaliana were mapped in rose. Rose orthologues of FLOWERING LOCUS T (RoFT), TERMINAL FLOWER 1 (RoKSN), SPINDLY (RoSPINDLY), DELLA (RoDELLA), and SLEEPY (RoSLEEPY) co-localized with cQTL for relevant traits. This is the first report on the genetic basis of complex inflorescence developmental traits in rose

    Light signaling and plant responses to blue and UV radiations – Perspectives for applications in horticulture

    Get PDF
    Ultra-violet (UV) and blue radiations are perceived by plants through several photoreceptors. They regulate a large range of processes throughout plant life. Along with red radiations, they are involved in diverse photomorphogenic responses, e.g., seedling development, branching or flowering. In this paper, we present an overview of UV- and blue-radiations signaling pathways in some key physiological processes and describe effects of plant exposure to these wavelengths on phenotype as well as on contents in useful metabolites and resistance to bio aggressors. Taking these knowledge into account, we finally discuss possible applications of the use of such radiations to improve plant production in horticulture

    3D phenotyping and QTL analysis of a complex character: rose bush architecture

    Get PDF
    Plant shape, and thereby plant architecture, is a major component of the visual quality of ornamental plants. We have been developing a new method for analyzing the entire plant architecture by 3D digitalization that allows an almost exhaustive description of rose bush architecture and generates a large number of variables, many of them inaccessible manually. We carried out a QTL analysis using this original phenotyping method. In order to evaluate a broader allelic variability as well as the effect of the genetic background on QTL detection, we used two connected, segregating, recurrent blooming populations. The number of QTLs per variable varied from three for the number of determined axes (NbDetA) to seven for the branching angle of order 2 long axes (AngLA2), the two populations taken together. Five new QTLs, located on the linkage groups (LGs) 2, 6, and 7, were detected for the branching angle of axes, and the QTL located on LG7 co-localized with RhBRC1, a branching repressor. Branching and stem elongation QTLs also co-located with RhBRC1, suggesting its pleiotropic nature. Year-specific QTLs were also revealed, that explained the genotype × year interactions observed for the number of order 3 short axes (NbSA3) and AngLA2 from a genetic point of view. We also evidenced an effect of the genetic background on QTL detection. This new knowledge should help to better reason the genetic improvement programs for rose bush architecture and, therefore, rose bush shape

    Analysis of the Impact of Climatic Conditions on Floral Transformation in Hydrangea macrophylla ‘Leuchtfeuer’

    Get PDF
    Hydrangea macrophylla is a horticultural plant of considerable commercial interest that has been widely studied with the aim to more effectively control the different stages of its development during production. However, although floral transformation is a key factor underlying the commercial quality of the product, it remains difficult to control despite these efforts. The floral transformation sequence consists of three successive phases: floral induction (B1), floral evocation (B2), and floral organogenesis (B3). The first is a phase of vegetative organogenesis without elongation leading to the formation of a bud composed of eight phytomer primordia under inductive climatic conditions. This work shows that climatic conditions favorable to floral transformation must be continuously applied without interruption throughout phase B1 to ensure the formation of the floral bud in Hydrangea macrophylla ‘Leuchtfeuer’. In the opposite case, floral transformation is stopped and vegetative growth begins once again

    Genotype × year interaction and broad-sense heritability of architectural characteristics in rose bush

    Get PDF
    The effect of genotype factors, year and their interaction was assessed on six architectural variables of eight cultivars of rose bush. Plants were grown in pots in a greenhouse in the spring of 2011 and 2012, two highly contrasted years in terms of the quantity of cumulative radiation, with a relative deviation (for 2012 compared to 2011) ranging from −24.6% (April) to +13.7% (March). Their architecture was digitized at two observation scales, the plant and the axis. Highly significant genotype (G) and year (Y) effects were revealed for all of the variables measured, as well as a G × Y interaction. Concerning the year effect, it was significantly higher in 2012 and for all of the variables measured. The G × Y interaction was due to (i) different genotype groupings according to year, (ii) difference response amplitudes between years according to genotype. Broad-sense heritability was calculated for each of these variables. It was moderate to high, ranging from 48% for the length of long axes to 98% for the number of metamers on long axes

    Effect of high temperature on the production of 2n pollen grains in diploid roses and obtaining tetraploids via unilateral polyploidization

    Get PDF
    To integrate the gene pool of a wild species (primarily diploid) into a cultivated pool (primarily tetraploid), a crossing between a dihaploid cultivated rose and a hybrid of Rosa wichurana allowed to obtain interspecific diploid hybrids that produced 2n pollen grains. A return to a tetraploid level sought by breeders can then be considered using sexual polyploidization, obtained by crossing a tetraploid cultivated rose with these hybrids. Application of a high-temperature regime led to a small but significant increase in the percentage of 2n pollen grains in these hybrids of up to 4.6%. This result was obtained by applying high temperatures close to 32°C during the day to plants cultivated in a glasshouse during recurrent cycles of bloom. Crosses were made between an unreleased tetraploid hybrid tea rose, as a female, and the diploid hybrid that produces the most 2n pollen grains. Tetraploid (42.1%) and triploid (57.9%) offspring were obtained. The use of these 2n pollen grains of the first division restitution type should facilitate the introgression of complex traits of interest

    The Influence of Pruning on Morphological and Architectural Characteristics of Camellia japonica L. in a Tropical Climate

    Get PDF
    The ornamental qualities of Camellia japonica have long been of interest to horticulturists. The European garden plant market has traditionally been characterized by erect, branched and flowered plants. More recently, a new market linked to increasing urbanization has developed for compact, highly branched and flowered plants to decorate balconies and patios. Two flushes are formed per year in temperate climates, and three years are required to obtain a garden plant. In the humid, tropical climate of Reunion Island, at an altitude of 700 m, three to four flushes are formed in a single growing season. Under these conditions and with no pruning, it is possible to produce an upright plant with a height of 48.5 cm and 7.5 branchings, adapted to the traditional garden market. With two prunings and the same growing period, a compact plant with a height of 25.4 and 17.0 branchings can be produced, adapted to the new balcony-patio market. In both cases, floral induction occurs in November when the nighttime temperature is above 15 degrees C. This research shows that it is possible to generate diversified and innovative forms of Camellia japonica with considerable marketing potential using adapted pruning and under appropriate climatic conditions
    corecore