550 research outputs found

    Confirmation of two extended objects along the line of sight to PKS1830-211 with ESO-VLT adaptive optics imaging

    Full text link
    We report on new high-resolution near-infrared images of the gravitationally lensed radio source PKS1830-211, a quasar at z=2.507. These adaptive optics observations, taken with the Very Large Telescope (VLT), are further improved through image deconvolution. They confirm the presence of a second object along the line of sight to the quasar, in addition to the previously known spiral galaxy. This additional object is clearly extended in our images. However, its faint luminosity does not allow to infer any photometric redshift. If this galaxy is located in the foreground of PKS1830-211, it complicates the modeling of this system and decreases the interest in using PKS1830-211 as a means to determine H0 via the time delay between the two lensed images of the quasar.Comment: Accepted in A&A Letter

    Beware the Non-uniqueness of Einstein Rings

    Get PDF
    We explain how an approximation to the rings formed by the host galaxies in lensed QSOs can be inferred from the QSO data alone. A simple ring image can be made from any lens model by a simple piece of computer graphics: just plot a contour map of the arrival-time surface with closely-spaced contours. We go on to explain that rings should be (a) sensitive to time-delay ratios between different pairs of images, but (b) very insensitive to H_0. We illustrate this for the well-known quads 1115+080 and 1608+656.Comment: To appear in AJ (circa Aug 2001

    The Double Quasar HE1104-1805: a case study for time delay determination with poorly sampled lightcurves

    Get PDF
    We present a new determination of the time delay of the gravitational lens system HE1104-1805 ('Double Hamburger') based on a previously unpublished dataset. We argue that the previously published value of dt_(A-B)=0.73 years was affected by a bias of the employed method. We determine a new value of dt_(A-B)=0.85+/-0.05 years (2 sigma confidence level), using six different techniques based on non interpolation methods in the time domain. The result demonstrates that even in the case of poorly sampled lightcurves, useful information can be obtained with regard to the time delay. The error estimates were calculated through Monte Carlo simulations. With two already existing models for the lens and using its recently determined redshift, we infer a range of values of the Hubble parameter: Ho=48+/-4 km/s Mpc^-1 (2 sigma) for a singular isothermal ellipsoid (SIE) and Ho=62+/-4 km/s Mpc^-1 (2 sigma) for a constant mass-to-light ratio plus shear model (M/L+gamma). The possibly much larger errors due to systematic uncertainties in modeling the lens potential are not included in this error estimate.Comment: 11 pages, 15 figures, accepted by Astronomy and Astrophysic

    On-axis spectroscopy of the host galaxies of 20 optically luminous quasars at z~0.3

    Get PDF
    We present the analysis of a sample of 20 bright low-redshift quasars (M_B<-23 and z < 0.35) observed spectroscopically with the VLT. The FORS1 spectra, obtained in Multi Object Spectroscopy (MOS) mode, allow to observe simultaneously the quasars and several reference stars used to spatially deconvolve the data. Applying the MCS deconvolution method, we are able to separate the individual spectra of the quasar and of the underlying host galaxy. Contrary to some previous claims, we find that luminous quasars are not exclusively hosted by massive ellipticals. Most quasar host galaxies harbour large amounts of gas, irrespective of their morphological type. Moreover, the stellar content of half of the hosts is a young Sc-like population, associated with a rather low metallicity interstellar medium. A significant fraction of the galaxies contain gas ionized at large distances by the quasar radiation. This large distance ionization is always associated with signs of gravitational interactions (as detected from images or disturbed rotation curves). The spectra of the quasars themselves provide evidence that gravitational interactions bring dust and gas in the immediate surrounding of the super massive black hole, allowing to feed it. The quasar activity might thus be triggered (1) in young gas-rich spiral galaxies by local events and (2) in more evolved galaxies by gravitational interactions or collisions. The latter mechanism gives rises to the most powerful quasars. Finally, we derive mass models for the isolated spiral host galaxies and we show that the most reliable estimators of the systemic redshift in the quasar spectrum are the tips of the Ha and Hb lines.Comment: 30 pages, 19 figures, 9 tables, accepted for publication in MNRAS, major revisio

    Photometric monitoring of the doubly imaged quasar UM673: possible evidence for chromatic microlensing

    Full text link
    We present the results of two-band CCD photometric monitoring of the gravitationally lensed quasar Q 0142-100 (UM 673).The data, obtained at ESO-La Silla with the 1.54 m Danish telescope in the Gunn i-band (October 1998 - September 1999) and in the Johnson V-band (October 1998 to December 2001), were analyzed using three different photometric methods. The light-curves obtained with all methods show variations, with a peak-to-peak amplitude of 0.14 magnitude in VV. Although it was not possible to measure the time delay between the two lensed QSO images, the brighter component displays possible evidence for microlensing: it becomes bluer as it gets brighter, as expected under the assumption of differential magnification of a quasar accretion diskComment: Accepted for publication in Astronomy & Astrophysics; 8 pages, 7 figure

    Spatial decomposition of on-nucleus spectra of quasar host galaxies

    Get PDF
    In order to study the host galaxies of type 1 (broad-line) quasars, we present a semi-analytic modelling method to decompose the on-nucleus spectra of quasars into nuclear and host galaxy channels. The method uses the spatial information contained in long-slit or slitlet spectra. A routine determines the best-fitting combination of the spatial distribution of the point like nucleus and extended host galaxy. This is fully complementary to a numerical spatial deconvolution technique that we applied to the same data in a previous analysis, which allows a cross-calibration of the two methods. Inputs are a simultaneously observed point spread function, and external constraints on galaxy morphology from imaging. We demonstrate the capabilities of the method to two samples of a total of 18 quasars observed with EFOSC at the ESO 3.6-m telescope and FORS1 at the ESO VLT. ∼50 per cent of the host galaxies with successful decomposition show distortions in their rotation curves or peculiar gas velocities above normal maximum velocities for discs. This is consistent with the fraction from optical imaging. All host galaxies have quite young stellar populations, typically 1-2 Gyr. For the disc dominated hosts these are consistent with their inactive counterparts, the luminosity-weighted stellar ages are much younger for the bulge dominated hosts, compared to inactive early-type galaxies. While this presents further evidence for a connection of galaxy interaction and active galactic nucleus (AGN) activity for half of the sample, this is not clear for the other half. These are often undistorted disc dominated host galaxies, and interaction on a smaller level might be detected in deeper high-resolution images or deeper spectroscopic data. The velocity information does not show obvious signs for large scale outflows triggered by AGN feedback - the data are consistent with velocity fields created by galaxy interactio

    The Spatial Structure of An Accretion Disk

    Get PDF
    Based on the microlensing variability of the two-image gravitational lens HE1104-1805 observed between 0.4 and 8 microns, we have measured the size and wavelength-dependent structure of the quasar accretion disk. Modeled as a power law in temperature, T proportional to R^-beta, we measure a B-band (0.13 microns in the rest frame) half-light radius of R_{1/2,B} = 6.7 (+6.2 -3.2) x 10^15 cm (68% CL) and a logarithmic slope of beta=0.61 (+0.21 -0.17) for our standard model with a logarithmic prior on the disk size. Both the scale and the slope are consistent with simple thin disk models where beta=3/4 and R_{1/2,B} = 5.9 x 10^15 cm for a Shakura-Sunyaev disk radiating at the Eddington limit with 10% efficiency. The observed fluxes favor a slightly shallower slope, beta=0.55 (+0.03 -0.02), and a significantly smaller size for beta=3/4.Comment: 5 pages, 4 figures, submitted to Ap

    Lens or Binary? Chandra Observations of the Wide Separation Broad Absorption Line Quasar Pair UM425

    Full text link
    We have obtained a 110 ksec Chandra ACIS-S exposure of UM425, a pair of QSOs at z=1.47 separated by 6.5 arcsec, which show remarkably similar emission and broad absorption line (BAL) profiles in the optical/UV. Our 5000 count X-ray spectrum of UM425A (the brighter component) is well-fit with a power law (photon spectral index Gamma=2.0) partially covered by a hydrogen column of 3.8x10^22 cm^-2. The underlying power-law slope for this object and for other recent samples of BALQSOs is typical of radio-quiet quasars, lending credence to the hypothesis that BALs exist in every quasar. Assuming the same Gamma for the much fainter image of UM425B, we detect an obscuring column 5 times larger. We search for evidence of an appropriately large lensing mass in our Chandra image and find weak diffuse emission near the quasar pair, with an X-ray flux typical of a group of galaxies at redshift z ~ 0.6. From our analysis of archival HST WFPC2 and NICMOS images, we find no evidence for a luminous lensing galaxy, but note a 3-sigma excess of galaxies in the UM425 field with plausible magnitudes for a z=0.6 galaxy group. However, the associated X-ray emission does not imply sufficient mass to produce the observed image splitting. The lens scenario thus requires a dark (high M/L ratio) lens, or a fortuitous configuration of masses along the line of sight. UM425 may instead be a close binary pair of BALQSOs, which would boost arguments that interactions and mergers increase nuclear activity and outflows.Comment: 13 pages, 9 figures, Accepted for publication in the Astrophysical Journa

    Discovery of a Galaxy Cluster in the Foreground of the Wide-Separation Quasar Pair UM425

    Full text link
    We report the discovery of a cluster of galaxies in the field of UM425, a pair of quasars separated by 6.5arcsec. Based on this finding, we revisit the long-standing question of whether this quasar pair is a binary quasar or a wide-separation lens. Previous work has shown that both quasars are at z=1.465 and show broad absorption lines. No evidence for a lensing galaxy has been found between the quasars, but there were two hints of a foreground cluster: diffuse X-ray emission observed with Chandra, and an excess of faint galaxies observed with the Hubble Space Telescope. Here we show, via VLT spectroscopy, that there is a spike in the redshift histogram of galaxies at z=0.77. We estimate the chance of finding a random velocity structure of such significance to be about 5%, and thereby interpret the diffuse X-ray emission as originating from z=0.77, rather than the quasar redshift. The mass of the cluster, as estimated from either the velocity dispersion of the z=0.77 galaxies or the X-ray luminosity of the diffuse emission, would be consistent with the theoretical mass required for gravitational lensing. The positional offset between the X-ray centroid and the expected location of the mass centroid is about 40kpc, which is not too different from offsets observed in lower redshift clusters. However, UM425 would be an unusual gravitational lens, by virtue of the absence of a bright primary lensing galaxy. Unless the mass-to-light ratio of the galaxy is at least 80 times larger than usual, the lensing hypothesis requires that the galaxy group or cluster plays a uniquely important role in producing the observed deflections. Based on observations performed with the Very Large Telescope at the European Southern Observatory, Paranal, Chile.Comment: 12 pages, accepted by ApJ 2005, May 1

    MUSE-inspired view of the quasar Q2059-360, its Lyman alpha blob, and its neighborhood

    Full text link
    The radio-quiet quasar Q2059-360 at redshift z=3.08z=3.08 is known to be close to a small Lyman α\alpha blob (LAB) and to be absorbed by a proximate damped Lyα\alpha (PDLA) system. Here, we present the Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy follow-up of this quasi-stellar object (QSO). Our primary goal is to characterize this LAB in detail by mapping it both spatially and spectrally using the Lyα\alpha line, and by looking for high-ionization lines to constrain the emission mechanism. Combining the high sensitivity of the MUSE integral field spectrograph mounted on the Yepun telescope at ESO-VLT with the natural coronagraph provided by the PDLA, we map the LAB down to the QSO position, after robust subtraction of QSO light in the spectral domain. In addition to confirming earlier results for the small bright component of the LAB, we unveil a faint filamentary emission protruding to the south over about 80 pkpc (physical kpc); this results in a total size of about 120 pkpc. We derive the velocity field of the LAB (assuming no transfer effects) and map the Lyα\alpha line width. Upper limits are set to the flux of the N V λ12381242\lambda 1238-1242, C IV λ15481551\lambda 1548-1551, He II λ1640\lambda 1640, and C III] λ15481551\lambda 1548-1551 lines. We have discovered two probable Lyα\alpha emitters at the same redshift as the LAB and at projected distances of 265 kpc and 207 kpc from the QSO; their Lyα\alpha luminosities might well be enhanced by the QSO radiation. We also find an emission line galaxy at z=0.33z=0.33 near the line of sight to the QSO. This LAB shares the same general characteristics as the 17 others surrounding radio-quiet QSOs presented previously. However, there are indications that it may be centered on the PDLA galaxy rather than on the QSO.Comment: Accepted for publication in Astronomy & Astrophysics; 16 pages, 19 figure
    corecore