424 research outputs found

    Effect of the dispersion of the chromophore on the optical performances of polarizers from polyethylene and 5”-thio-(3-butyl)nonyl-2,2’:5’,2”-terthiophene

    Get PDF
    A new polyethylene-compatible terthiophene chromophore, 5"-thio-(3-butyl) nonyl-2,2':5',2"-terthiophene, with melting point lower than 0degreesC was prepared and used for linear polarizers based on ultra-high-molecular-weight polyethylene (UHMWPE). Differential scanning calorimetry and scanning electron microscopy indicate that the new chromophore is dispersed uniformly in films of UHMWPE obtained by casting from solution. The films show excellent dichroic properties (dichroic ratio 30) at rather low drawing ratio (approximate to20). Moreover, qualitative agreement is observed with the Ward pseudo-affine deformation schem

    In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections

    Get PDF
    Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed

    Linear and non linear measures of pupil size as a function of hypnotizability

    Get PDF
    Higher arousal and cortical excitability have been observed in high hypnotizable individuals (highs) with respect to low hypnotizables (lows), which may be due to differences in the activation of ascending activating systems. The present study investigated the possible hypnotizability-related difference in the cortical noradrenergic tone sustained by the activity of the Locus Coeruleus which is strongly related to pupil size. This was measured during relaxation in three groups of participants—highs (N = 15), lows (N = 15) and medium hypnotizable individuals (mediums, N = 11)—in the time and frequency domains and through the Recurrence Quantification Analysis. ECG and Skin Conductace (SC) were monitored to extract autonomic indices of relaxation (heart interbeats intervals, parasympathetic component of heart rate variability (RMSSD) and tonic SC (MeanTonicSC). Most variables indicated that participants relaxed throughout the session. Pupil features did not show significant differences between highs, mediums and lows, except for the spectral Band Median Frequency which was higher in mediums than in lows and highs at the beginning, but not at the end of the session.Thus, the present findings of pupil size cannot account for the differences in arousal and motor cortex excitability observed between highs and lows in resting conditions

    Parametrised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic

    Get PDF
    In this paper, we initiate a systematic study of the parametrised complexity in the field of Dependence Logics which finds its origin in the Dependence Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this logic (PDL) and investigate a variety of parametrisations with respect to the central decision problems. The model checking problem (MC) of PDL is NP-complete. The subject of this research is to identify a list of parametrisations (formula-size, treewidth, treedepth, team-size, number of variables) under which MC becomes fixed-parameter tractable. Furthermore, we show that the number of disjunctions or the arity of dependence atoms (dep-arity) as a parameter both yield a paraNP-completeness result. Then, we consider the satisfiability problem (SAT) showing a different picture: under team-size, or dep-arity SAT is paraNP-complete whereas under all other mentioned parameters the problem is in FPT. Finally, we introduce a variant of the satisfiability problem, asking for teams of a given size, and show for this problem an almost complete picture.Comment: Update includes refined result

    Alternating block copolymer-based nanoparticles as tools to modulate the loading of multiple chemotherapeutics and imaging probes

    Get PDF
    Abstract Cancer therapy often relies on the combined action of different molecules to overcome drug resistance and enhance patient outcome. Combined strategies relying on molecules with different pharmacokinetics often fail due to the lack of concomitant tumor accumulation and, thus, to the loss of synergistic effect. Due to their ability to enhance treatment efficiency, improve drug pharmacokinetics, and reduce adverse effects, polymer nanoparticles (PNPs) have been widely investigated as co-delivery vehicles for cancer therapies. However, co-encapsulation of different drugs and probes in PNPs requires a flexible polymer platform and a tailored particle design, in which both the bulk and surface properties of the carriers are carefully controlled. In this work, we propose a core-shell PNP design based on a polyurethane (PUR) core and a phospholipid external surface. The modulation of the hydrophilic/hydrophobic balance of the PUR core enhanced the encapsulation of two chemotherapeutics with dramatically different water solubility (Doxorubicin hydrochloride, DOXO and Docetaxel, DCTXL) and of Iron Oxide Nanoparticles for MRI imaging. The outer shell remained unchanged among the platforms, resulting in un-modified cellular uptake and in vivo biodistribution. We demonstrate that the choice of PUR core allowed a high entrapment efficiency of all drugs, superior or comparable to previously reported results, and that higher core hydrophilicity enhances the loading efficiency of the hydrophilic DOXO and the MRI contrast effect. Moreover, we show that changing the PUR core did not alter the surface properties of the carriers, since all particles showed a similar behavior in terms of cell internalization and in vivo biodistribution. We also show that PUR PNPs have high passive tumor accumulation and that they can efficient co-deliver the two drugs to the tumor, reaching an 11-fold higher DOXO/DCTXL ratio in tumor as compared to free drugs. Statement of Significance Exploiting the synergistic action of multiple chemotherapeutics is a promising strategy to improve the outcome of cancer patients, as different agents can simultaneously engage different features of tumor cells and/or their microenvironment. Unfortunately, the choice is limited to drugs with similar pharmacokinetics that can concomitantly accumulate in tumors. To expand the spectrum of agents that can be delivered in combination, we propose a multi-compartmental core-shell nanoparticles approach, in which the core is made of biomaterials with high affinity for drugs of different physical properties. We successfully co-encapsulated Doxorubicin Hydrochloride, Docetaxel, and contrast agents and achieved a significantly higher concomitant accumulation in tumor versus free drugs, demonstrating that nanoparticles can improve synergistic cancer chemotherapy

    In situ Forming Hyperbranched PEG—Thiolated Hyaluronic Acid Hydrogels With Honey-Mimetic Antibacterial Properties

    Get PDF
    The rapidly increasing resistance of bacteria to currently approved antibiotic drugs makes surgical interventions and the treatment of bacterial infections increasingly difficult. In recent years, complementary strategies to classical antibiotic therapy have, therefore, gained importance. One of these strategies is the use of medicinal honey in the treatment of bacterially colonized wounds. One of the several bactericidal effects of honey is based on the in situ generation of hydrogen peroxide through the activity of the enzyme glucose oxidase. The strategy underlying this work is to mimic this antibacterial redox effect of honey in an injectable, biocompatible, and rapidly forming hydrogel. The hydrogel was obtained by thiol–ene click reaction between hyperbranched polyethylene glycol diacrylate (HB PEGDA), synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization, and thiolated hyaluronic acid (HA-SH). After mixing 500 ”L HB PEGDA (10%, w/w) and 500 ”L HA-SH (1%, w/w) solutions, hydrogels formed in ∌60 s (HB PEGDA/HA-SH 10.0–1.0), as assessed by the tube inverting test. The HB PEGDA/HA-SH 10.0–1.0 hydrogel (200 ”L) was resistant to in vitro dissolution in water for at least 64 days, absorbing up to 130 wt% of water. Varying glucose oxidase (GO) amounts (0–500 U/L) and constant glucose content (2.5 wt%) were loaded into HB PEGDA and HA-SH solutions, respectively, before hydrogel formation. Then, the release of H2O2 was evaluated through a colorimetric pertitanic acid assay. The GO content of 250 U/L was selected, allowing the formation of 10.8 ± 1.4 mmol H2O2/L hydrogel in 24 h, under static conditions. The cytocompatibility of HB PEGDA/HA-SH 10.0–1.0 hydrogels loaded with different GO activities (≀ 500 U/L) at a constant glucose amount (2.5 wt%) was investigated by in vitro assays at 24 h with L929 and HaCaT cell lines, according to DIN EN ISO 10993-5. The tests showed cytocompatibility for GO enzyme activity up to 250 U/L for both cell lines. The antibacterial activity of HB PEGDA/HA-SH 10.0–1.0 hydrogels loaded with increasing amounts of GO was demonstrated against various gram-positive bacteria (S. aureus and S. epidermidis), antibiotic-resistant gram-positive bacteria (MRSA and MRSE), gram-negative bacteria (P. aeruginosa, E. coli, and A. baumanii), and antibiotic-resistant gram-negative strains (P. aeruginosa and E. coli) using agar diffusion tests. For all gram-positive bacterial strains, increasing efficacy was measured with increasing GO activity. For the two P. aeruginosa strains, efficacy was shown only from an enzyme activity of 125 U/L and for E. coli and A. baumanii, efficacy was shown only from 250 U/L enzyme activity. HB PEGDA/HA-SH 10.0–1.0 hydrogels loaded with ≀250 U/L GO and 2.5 wt% glucose are promising formulations due to their fast-forming properties, cytocompatibility, and ability to produce antibacterial H2O2, warranting future investigations for bacterial infection treatment, such as wound care
    • 

    corecore