3,192 research outputs found
A 16-channel Digital TDC Chip with internal buffering and selective readout for the DIRC Cherenkov counter of the BABAR experiment
A 16-channel digital TDC chip has been built for the DIRC Cherenkov counter
of the BaBar experiment at the SLAC B-factory (Stanford, USA). The binning is
0.5 ns, the conversion time 32 ns and the full-scale 32 mus. The data driven
architecture integrates channel buffering and selective readout of data falling
within a programmable time window. The time measuring scale is constantly
locked to the phase of the (external) clock. The linearity is better than 80 ps
rms. The dead time loss is less than 0.1% for incoherent random input at a rate
of 100 khz on each channel. At such a rate the power dissipation is less than
100 mw. The die size is 36 mm2.Comment: Latex, 18 pages, 13 figures (14 .eps files), submitted to NIM
Electrical Characterization of a Thin Edgeless N-on-p Planar Pixel Sensors For ATLAS Upgrades
In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC),
the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon
system. Because of its radiation hardness and cost effectiveness, the n-on-p
silicon technology is a promising candidate for a large area pixel detector.
The paper reports on the joint development, by LPNHE and FBK of novel n-on-p
edgeless planar pixel sensors, making use of the active trench concept for the
reduction of the dead area at the periphery of the device. After discussing the
sensor technology, and presenting some sensors' simulation results, a complete
overview of the electrical characterization of the produced devices will be
given.Comment: 9 pages, 9 figures, to appear in the proceedings of the 15th
International Workshops on Radiation Imaging Detector
Novel Silicon n-on-p Edgeless Planar Pixel Sensors for the ATLAS upgrade
In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans
to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon
technology is a promising candidate for the pixel upgrade thanks to its
radiation hardness and cost effectiveness, that allow for enlarging the area
instrumented with pixel detectors. We report on the development of novel n-in-p
edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of
the "active edge" concept for the reduction of the dead area at the periphery
of the device. After discussing the sensor technology and fabrication process,
we present device simulations (pre- and post-irradiation) performed for
different sensor configurations. First preliminary results obtained with the
test-structures of the production are shown.Comment: 6 pages, 5 figures, to appear in the proceedings of the 9th
International Conference on Radiation Effects on Semiconductor Materials
Detectors and Device
Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades
The development of n-on-p "edgeless" planar pixel sensors being fabricated at
FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the
High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A
characterizing feature of the devices is the reduced dead area at the edge,
achieved by adopting the "active edge" technology, based on a deep etched
trench, suitably doped to make an ohmic contact to the substrate. The project
is presented, along with the active edge process, the sensor design for this
first n-on-p production and a selection of simulation results, including the
expected charge collection efficiency after radiation fluence of comparable to those expected at HL-LHC (about
ten years of running, with an integrated luminosity of 3000 fb) for the
outer pixel layers. We show that, after irradiation and at a bias voltage of
500 V, more than 50% of the signal should be collected in the edge region; this
confirms the validity of the active edge approach.Comment: 20 pages, 9 figures, submitted to Nucl. Instr. and Meth.
Performance of Irradiated Thin Edgeless N-on-P Planar Pixel Sensors for ATLAS Upgrades
In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC),
the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon
system. Because of its radiation hardness and cost effectiveness, the n-on-p
silicon technology is a promising candidate for a large area pixel detector.
The paper reports on the joint development, by LPNHE and FBK of novel n-on-p
edgeless planar pixel sensors, making use of the active trench concept for the
reduction of the dead area at the periphery of the device. After discussing the
sensor technology, a complete overview of the electrical characterization of
several irradiated samples will be discussed. Some comments about detector
modules being assembled will be made and eventually some plans will be
outlined.Comment: 6 pages, 13 figures, to appear in the proceedings of the 2013 Nuclear
Science Symposium and Medical Imaging Conference. arXiv admin note: text
overlap with arXiv:1311.162
In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana.
A current challenge in microbial pathogenesis is to identify biological control agents that may prevent and/or limit host invasion by microbial pathogens. In natura, hosts are often infected by multiple pathogens. However, most of the current studies have been performed under laboratory controlled conditions and by taking into account the interaction between a single commensal species and a single pathogenic species. The next step is therefore to explore the relationships between host-microbial communities (microbiota) and microbial members with potential pathogenic behavior (pathobiota) in a realistic ecological context. In the present study, we investigated such relationships within root-associated and leaf-associated bacterial communities of 163 ecologically contrasted Arabidopsis thaliana populations sampled across two seasons in southwest of France. In agreement with the theory of the invasion paradox, we observed a significant humped-back relationship between microbiota and pathobiota α-diversity that was robust between both seasons and plant organs. In most populations, we also observed a strong dynamics of microbiota composition between seasons. Accordingly, the potential pathobiota composition was explained by combinations of season-specific microbiota operational taxonomic units. This result suggests that the potential biomarkers controlling pathogen\u27s invasion are highly dynamic
- …