403 research outputs found

    A Comparison between Rotating Squares and Anti-Tetrachiral Systems: Influence of Ligaments on the Multi-Axial Mechanical Response

    Get PDF
    Rotating unit systems are one of the most important and well-known classes of auxetic mechanical metamaterials. As their name implies, when loaded, these systems deform primarily via rotation of blocks of material, which may be connected together either directly through joints (or ‘joint-like’ connections made by overlapping vertices of the rotating units) as in the case of rotating rigid polygonal-unit systems or by ligaments/ribs as in the case of chiral honeycombs. In this work, we used Finite Element Analysis to investigate the effect which the presence/absence of ligaments has on the on-axis and off-axis mechanical properties of these systems by analysing two of the most well-known structures which characterise these two cases: the rotating square system and the anti-tetrachiral honeycomb. It was found that while the presence of ligaments has a negligible effect on the on-axis Poisson’s ratio of these systems, it has a profound influence on nearly all other mechanical properties as well as on the off-axis loading behaviour. Systems with ligaments were found to exhibit a high level of anisotropy and also a severely reduced level of stiffness in comparison to their non-ligamented counterparts. On the other hand, the rotating square system suffers from high localized stress-intensities and has a very low strain-tolerance threshold. In addition, an optimized ‘hybrid’ geometry which is specifically designed to capture the best features of both the anti-tetrachiral and rotating square system, was also analysed. This work shows the main differences between ligament-based and non-ligament-based auxetic structures and also highlights the importance of considering the off-axis mechanical response in addition to the on-axis properties when investigating such systems

    In situ immunofluorescent staining of autophagy in muscle stem cells

    Get PDF
    Increasing evidence points to autophagy as a crucial regulatory process to preserve tissue homeostasis. It is known that autophagy is involved in skeletal muscle development and regeneration, and the autophagic process has been described in several muscular pathologies and agerelated muscle disorders. A recently described block of the autophagic process that correlates with the functional exhaustion of satellite cells during muscle repair supports the notion that active autophagy is coupled with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor the autophagic process in the adult Muscle Stem Cell (MuSC) compartment during muscle regenerative conditions. This protocol describes the setup methodology to perform in situ immunofluorescence imaging of LC3, an autophagy marker, and MyoD, a myogenic lineage marker, in muscle tissue sections from control and injured mice. The methodology reported allows for monitoring the autophagic process in one specific cell compartment, the MuSC compartment, which plays a central role in orchestrating muscle regeneration

    Experimental and numerical analysis of a liquid aluminium injector for an Al-H2O based hydrogen production system

    Get PDF
    This paper investigates pressurised injection system for liquid aluminium for a cogeneration system based on the Al–H2O reaction. The reaction produces hydrogen and heat which is used for super-heating vapour for a steam cycle. The aluminium combustion with water generates also alumina as a byproduct; the aluminium oxide can be recycled and transformed back to aluminium. Thus, aluminium can be exploited as energy carrier in order to transport energy from the alumina recycling plant to the place where the cogeneration system is located. The water is also used in a closed loop; indeed, the amount of water produced employing the hydrogen obtained by the proposed system corresponds to the oxidizing water for the Al/H2O reaction. The development of a specific test rig designed for investigating the liquid aluminium injection is presented in this research study. The injector nozzle is investigated by means of numerical thermal and structural analysis. The calculations are compared and validated against the experimental measurements carried out on ad-hoc developed test rig. A good agreement between the numerical results and the experimental values is found and the new design of the nozzle is devised

    Study on NGF and VEGF during the Equine Perinatal Period—Part 2: Foals Affected by Neonatal Encephalopathy

    Get PDF
    Simple Summary Based on human medicine, Neonatal Encephalopathy is the term used by equine clinicians for newborn foals which develop a variety of non-infectious neurological signs in the immediate postpartum period. It has become the preferred term because it does not imply a specific underlying etiology or pathophysiology, as hypoxia and ischemia may not be recognized in all cases. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. Our aim is to clinically characterize a population of foals spontaneously affected by Neonatal Encephalopathy and to evaluate the levels of trophic factors, such as nerve growth factor and vascular epithelial growth factor, and thyroid hormones obtained at birth/admission from a population of affected foals and in the first 72 h of life/hospitalization, as well as the expression of trophic factors in the placenta of mares that delivered foals affected by Neonatal Encephalopathy. The less pronounced decrease of the two trophic factors compared to healthy foals, their close relationship with thyroid hormones over time, and the dysregulation of trophic factor expression in placental tissues, could be key regulators in the mechanisms of equine Neonatal Encephalopathy. Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population of foals spontaneously affected by NE. The study aimed to: (i) evaluate nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) levels in plasma samples obtained in the affected population at parturition from the mare's jugular vein, umbilical cord vein and foal's jugular vein, as well as in amniotic fluid; (ii) evaluate the NGF and VEGF content in the plasma of foals affected by NE during the first 72 h of life/hospitalization; (iii) evaluate NGF and VEGF levels at birth/admission in relation to selected mare's and foal's clinical parameters; (iv) evaluate the relationship between the two trophic factors and thyroid hormone levels (TT3 and TT4) in the first 72 h of life/hospitalization; and (v) assess the mRNA expression of NGF, VEGF and brain-derived neurotrophic factor (BDNF), and their cell surface receptors, in the placenta of mares that delivered foals affected by NE. Thirteen affected foals born from mares hospitalized for peripartum monitoring (group NE) and twenty affected foals hospitalized after birth (group exNE) were included in the study. Dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF, and BDNF placental gene expression was performed using a semi-quantitative real-time PCR. In group NE, NGF levels decreased significantly from T0 to T24 (p = 0.0447) and VEGF levels decreased significantly from T0 to T72 (p = 0.0234), whereas in group exNE, only NGF levels decreased significantly from T0 to T24 (p = 0.0304). Compared to healthy foals, a significant reduction of TT3 levels was observed in both NE (T24, p = 0.0066; T72 p = 0.0003) and exNE (T0, p = 0.0082; T24, p < 0.0001; T72, p < 0.0001) groups, whereas a significant reduction of TT4 levels was observed only in exNE group (T0, p = 0.0003; T24, p = 0.0010; T72, p = 0.0110). In group NE, NGF levels were positively correlated with both TT3 (p = 0.0475; r = 0.3424) and TT4 levels (p = 0.0063; r = 0.4589).In the placenta, a reduced expression of NGF in the allantois (p = 0.0033) and a reduced expression of BDNF in the amnion (p = 0.0498) were observed. The less pronounced decrease of the two trophic factors compared to healthy foals, their relationship with thyroid hormones over time, and the reduced expression of NGF and BDNF in placental tissues of mares that delivered affected foals, could be key regulators in the mechanisms of equine NE

    Study on NGF and VEGF during the Equine Perinatal Period—Part 1: Healthy Foals Born from Normal Pregnancy and Parturition

    Get PDF
    The importance of trophic factors, such as nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) during the perinatal period, is now emerging. Through their functional activities of neurogenesis and angiogenesis, they play a key role in the final maturation of the nervous and vascular systems. The present study aims to: (i) evaluate the NGF and VEGF levels obtained at parturition from the mare, foal and umbilical cord vein plasma, as well as in amniotic fluid; (ii) evaluate NGF and VEGF content in the plasma of healthy foals during the first 72 h of life (T0, T24 and T72); (iii) evaluate NGF and VEGF levels at parturition in relation to the selected mares’ and foals’ clinical parameters; (iv) evaluate the relationship between the two trophic factors and the thyroid hormone levels (TT3 and TT4) in the first 72 h of life; (v) assess mRNA expression of NGF, VEGF and BDNF and their cell surface receptors in the placenta. Fourteen Standardbred healthy foals born from mares with normal pregnancies and parturitions were included in the study. The dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF and BDNF placental gene expression was performed using semi-quantitative real-time PCR. In foal plasma, both NGF and VEGF levels decreased significantly over time, from T0 to T24 (p = 0.0066 for NGF; p < 0.0001 for VEGF) and from T0 to T72 (p = 0.0179 for NGF; p = 0.0016 for VEGF). In foal serum, TT3 levels increased significantly over time from T0 to T24 (p = 0.0058) and from T0 to T72 (p = 0.0013), whereas TT4 levels decreased significantly over time from T0 to T24 (p = 0.0201) and from T0 to T72 (p < 0.0001). A positive correlation was found in the levels of NGF and VEGF in foal plasma at each time point (p = 0.0115; r = 0.2862). A positive correlation was found between NGF levels in the foal plasma at T0 and lactate (p = 0.0359; r = 0.5634) as well as between VEGF levels in the foal plasma at T0 and creatine kinase (p = 0.0459; r = 0.5407). VEGF was expressed in all fetal membranes, whereas NGF and its receptors were not expressed in the amnion. The close relationship between the two trophic factors in foal plasma over time and their fine expression in placental tissues appear to be key regulators of fetal development and adaptation to extra-uterine life

    Trans-generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy

    Get PDF
    Exon skipping is an effective strategy for the treatment of many Duchenne Muscular Dystrophy (DMD) mutations. Natural exon skipping observed in several DMD cases can help in identifying novel therapeutic tools. Here, we show a DMD study case where the lack of a splicing factor (Celf2a), which results in exon skipping and dystrophin rescue, is due to a maternally inherited trans-generational epigenetic silencing. We found that the study case and his mother express a repressive long non-coding RNA, DUXAP8, whose presence correlates with silencing of the Celf2a coding region. We also demonstrate that DUXAP8 expression is lost upon cell reprogramming and that, upon induction of iPSCs into myoblasts, Celf2a expression is recovered leading to the loss of exon skipping and loss of dystrophin synthesis. Finally, CRISPR/Cas9 inactivation of the splicing factor Celf2a was proven to ameliorate the pathological state in other DMD backgrounds establishing Celf2a ablation or inactivation as a novel therapeutic approach for the treatment of Duchenne Muscular Dystrophy

    De Novo Growth Zone Formation from Fission Yeast Spheroplasts

    Get PDF
    Eukaryotic cells often form polarized growth zones in response to internal or external cues. To understand the establishment of growth zones with specific dimensions we used fission yeast, which grows as a rod-shaped cell of near-constant width from growth zones located at the cell tips. Removing the cell wall creates a round spheroplast with a disorganized cytoskeleton and depolarized growth proteins. As spheroplasts recover, new growth zones form that resemble normal growing cell tips in shape and width, and polarized growth resumes. Regulators of the GTPase Cdc42, which control width in exponentially growing cells, also control spheroplast growth zone width. During recovery the Cdc42 scaffold Scd2 forms a polarized patch in the rounded spheroplast, demonstrating that a growth zone protein can organize independent of cell shape. Rga4, a Cdc42 GTPase activating protein (GAP) that is excluded from cell tips, is initially distributed throughout the spheroplast membrane, but is excluded from the growth zone after a stable patch of Scd2 forms. These results provide evidence that growth zones with normal width and protein localization can form de novo through sequential organization of cellular domains, and that the size of these growth zones is genetically controlled, independent of preexisting cell shape

    Quantifying the Loss of Coral from a Bleaching Event Using Underwater Photogrammetry and AI-Assisted Image Segmentation

    Get PDF
    Detecting the impacts of natural and anthropogenic disturbances that cause declines in organisms or changes in community composition has long been a focus of ecology. However, a tradeoff often exists between the spatial extent over which relevant data can be collected, and the resolution of those data. Recent advances in underwater photogrammetry, as well as computer vision and machine learning tools that employ artificial intelligence (AI), offer potential solutions with which to resolve this tradeoff. Here, we coupled a rigorous photogrammetric survey method with novel AI-assisted image segmentation software in order to quantify the impact of a coral bleaching event on a tropical reef, both at an ecologically meaningful spatial scale and with high spatial resolution. In addition to outlining our workflow, we highlight three key results: (1) dramatic changes in the three-dimensional surface areas of live and dead coral, as well as the ratio of live to dead colonies before and after bleaching; (2) a size-dependent pattern of mortality in bleached corals, where the largest corals were disproportionately affected, and (3) a significantly greater decline in the surface area of live coral, as revealed by our approximation of the 3D shape compared to the more standard planar area (2D) approach. The technique of photogrammetry allows us to turn 2D images into approximate 3D models in a flexible and efficient way. Increasing the resolution, accuracy, spatial extent, and efficiency with which we can quantify effects of disturbances will improve our ability to understand the ecological consequences that cascade from small to large scales, as well as allow more informed decisions to be made regarding the mitigation of undesired impacts

    Efficacy and safety of nilotinib as frontline treatment in elderly (> 65 years) chronic myeloid leukemia patients outside clinical trials

    Get PDF
    Here, we report real-world evidence on the safety and efficacy of nilotinib as a first-line treatment in elderly patients with chronic phase CML, treated in 18 Italian centers. Sixty patients aged > 65 years (median age 72 years (65-84)) were reported: 13 patients were older than 75 years. Comorbidities were recorded at baseline in 56/60 patients. At 3 months of treatment, all patients obtained complete hematological response (CHR), 43 (71.6%) an early molecular response (EMR), while 47 (78%) reached a complete cytogenetic response (CCyR). At last follow-up, 63.4% of patients still had a deep molecular response (MR4 or better), 21.6% reached MR3 as best response and 11.6% persisted without MR. Most patients (85%) started the treatment at the standard dose (300 mg BID), maintained at 3 months in 80% of patients and at 6 months in 89% of them. At the last median follow-up of 46.3 months, 15 patients discontinued definitively the treatment (8 due to side effects, 4 died for unrelated CML causes, 1 for failure, 2 were lost to follow-up). One patient entered in treatment-free remission. As to safety, 6 patients (10%) experienced cardiovascular events after a median time of 20.9 months from the start. Our data showed that nilotinib could be, as first-line treatment, effective and relatively safe even in elderly CML patients. In this setting, more data in the long term are needed about possible dose reduction to improve the tolerability, while maintaining the optimal molecular response
    • …
    corecore