68 research outputs found

    The Retrosplenial Cortex: Intrinsic Connectivity and Connections with the (Para)Hippocampal Region in the Rat. An Interactive Connectome

    Get PDF
    A connectome is an indispensable tool for brain researchers, since it quickly provides comprehensive knowledge of the brain's anatomical connections. Such knowledge lies at the basis of understanding network functions. Our first comprehensive and interactive account of brain connections comprised the rat hippocampal–parahippocampal network. We have now added all anatomical connections with the retrosplenial cortex (RSC) as well as the intrinsic connections of this region, because of the interesting functional overlap between these brain regions. The RSC is involved in a variety of cognitive tasks including memory, navigation, and prospective thinking, yet the exact role of the RSC and the functional differences between its subdivisions remain elusive. The connectome presented here may help to define this role by providing an unprecedented interactive and searchable overview of all connections within and between the rat RSC, parahippocampal region and hippocampal formation

    Delay and Impairment in Brain Development and Function in Rat Offspring After Maternal Exposure to Methylmercury

    Get PDF
    Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [F-18]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling. Female rat pups were exposed to MeHg via maternal diet during intrauterinal and lactational period (from gestational day 6 to postnatal day (PND)10), and their brain tissues were sampled for the analysis at weaning (PND18-21) and adulthood (PND61-70). The [F-18]FDG PET imaging and field potential analysis suggested a delay in brain activity and impaired neural function by MeHg. Genome-wide transcriptome analysis substantiated these findings by showing (1) a delay in the onset of gene expression related to neural development, and (2) alterations in pathways related to both structural and functional aspects of nervous system development. The latter included changes in gene expression of developmental regulators, developmental phase associated genes, small GTPase signaling molecules, and representatives of all processes required for synaptic transmission. These findings were observed at dose levels at which only marginal changes in conventional developmental toxicity endpoints were detected. Therefore, the approaches applied in this study are promising in terms of yielding increased sensitivity compared with classical developmental toxicity tests

    Preimaginal Stages of the Emerald Ash Borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae): An Invasive Pest on Ash Trees (Fraxinus)

    Get PDF
    This study provides the most detailed description of the immature stages of Agrilus planipennis Fairmaire to date and illustrates suites of larval characters useful in distinguishing among Agrilus Curtis species and instars. Immature stages of eight species of Agrilus were examined and imaged using light and scanning electron microscopy. For A. planipennis all preimaginal stages (egg, instars I-IV, prepupa and pupa) were described. A combination of 14 character states were identified that serve to identify larvae of A. planipennis. Our results support the segregation of Agrilus larvae into two informal assemblages based on characters of the mouthparts, prothorax, and abdomen: the A. viridis and A. ater assemblages, with A. planipennis being more similar to the former. Additional evidence is provided in favor of excluding A. planipennis from the subgenus Uragrilus

    Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    Get PDF
    BACKGROUND: The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. METHODOLOGY AND PRINCIPAL FINDINGS: Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. CONCLUSIONS AND SIGNIFICANCE: To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis

    Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    Get PDF
    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion

    C6 deficiency does not alter intrinsic regeneration speed after peripheral nerve crush injury

    No full text
    Peripheral nerve injury leads to Wallerian degeneration, followed by regeneration, in which functionality and morphology of the nerve are restored. We previously described that deficiency for complement component C6, which prevents formation of the membrane attack complex, slows down degeneration and results in an earlier recovery of sensory function after sciatic nerve injury compared to WT animals. In this study, we determine whether C6(-/-) rats have an intrinsic trait that affects sciatic nerve regeneration after injury. To study the contribution of complement activation on degeneration and regeneration with only minimal effect of complement activation, a crush injury model with only modest complement deposition was used. We compared the morphological and functional aspects of crushed nerves during degeneration and regeneration in C6(-/-) and WT animals. Morphological changes of myelin and axons showed similar degeneration and regeneration patterns in WT and C6(-/-) injured nerves. Functional degeneration and regeneration, recorded by ex vivo electrophysiology and in vivo foot flick test, showed that the timeline of the restoration of nerve conduction and sensory recovery also followed similar patterns in WT and C6(-/-) animals. Our findings suggest that C6 deficiency by itself does not alter the regrowth capacity of the peripheral nerve after crush injur

    Data_Sheet_1_Variance analysis as a method to predict the locus of plasticity at populations of non-uniform synapses.PDF

    No full text
    Our knowledge on synaptic transmission in the central nervous system has often been obtained by evoking synaptic responses to populations of synapses. Analysis of the variance in synaptic responses can be applied as a method to predict whether a change in synaptic responses is a consequence of altered presynaptic neurotransmitter release or postsynaptic receptors. However, variance analysis is based on binomial statistics, which assumes that synapses are uniform. In reality, synapses are far from uniform, which questions the reliability of variance analysis when applying this method to populations of synapses. To address this, we used an in silico model for evoked synaptic responses and compared variance analysis outcomes between populations of uniform versus non-uniform synapses. This simulation revealed that variance analysis produces similar results irrespectively of the grade of uniformity of synapses. We put this variance analysis to the test with an electrophysiology experiment using a model system for which the loci of plasticity are well established: the effect of amyloid-Ξ² on synapses. Variance analysis correctly predicted that postsynaptically produced amyloid-Ξ² triggered predominantly a loss of synapses and a minor reduction of postsynaptic currents in remaining synapses with little effect on presynaptic release probability. We propose that variance analysis can be reliably used to predict the locus of synaptic changes for populations of non-uniform synapses.</p
    • …
    corecore