885 research outputs found
Scanning Gate Spectroscopy on Nanoclusters
A gated probe for scanning tunnelling microscopy (STM) has been developed.
The probe extends normal STM operations by means of an additional electrode
fabricated next to the tunnelling tip. The extra electrode does not make
contact with the sample and can be used as a gate. We report on the recipe used
for fabricating the tunnelling tip and the gate electrode on a silicon nitride
cantilever. We demonstrate the functioning of the scanning gate probes by
performing single-electron tunnelling spectroscopy on 20-nm gold clusters for
different gate voltages.Comment: 3 pages, 4 figure
Electron-magnon coupling and nonlinear tunneling transport in magnetic nanoparticles
We present a theory of single-electron tunneling transport through a
ferromagnetic nanoparticle in which particle-hole excitations are coupled to
spin collective modes. The model employed to describe the interaction between
quasiparticles and collective excitations captures the salient features of a
recent microscopic study. Our analysis of nonlinear quantum transport in the
regime of weak coupling to the external electrodes is based on a rate-equation
formalism for the nonequilibrium occupation probability of the nanoparticle
many-body states. For strong electron-boson coupling, we find that the
tunneling conductance as a function of bias voltage is characterized by a large
and dense set of resonances. Their magnetic field dependence in the large-field
regime is linear, with slopes of the same sign. Both features are in agreement
with recent tunneling experiments.Comment: 4 pages, 2 figure
Effects of long term application of compost and poultry manure on soil quality of citrus orchards in Southern Italy.
A six-year study was carried out in an organically managed orange orchard located in Sicily (Southern Italy) to assess the effect of compost and organic fertilizers utilisation on soil quality. Adopting a randomized-block experimental design with three replicates, four treatments were carried out. In treatments 1 and 2, two different composts (C1 from distillery by products and C2 from livestock wastes) were applied. The plots of treatment 3 were fertilized using dried poultry manure. The control treatment was fertilized with mineral/synthetic fertilizers. In order to verify the hypothesis that composts and organic fertilizers improve soil fertility, soil quality was evaluated by selecting dynamic soil parameters, as indicators linked to C and N cycles. Total organic C, total N, C/N ratio, humified fraction, isoelectric focusing (IEF) of extracted organic matter, microbial biomass C, potentially mineralisable N under anaerobic conditions, potenzially mineralizable C, C mineralization quotient and metabolic quotient were determined for each sample. Furthermore, the Comunity level Physiological Profile (by Biolog tecnique) was defined, calculating derived functional biodiversity and versatility indexes. Parameters related to IEF and potentially mineralizable C showed significant differences among the treatments. Moreover, total C, total N and humification parameters tended to increase, while no differences were observed in biodiversity indexes. On these findings, it was concluded that composts and poultry manure only weakly affected soil properties, though they increased soil nutritive elements potentially available to crops
Large Magnetoresistance in Co/Ni/Co Ferromagnetic Single Electron Transistors
We report on magnetotransport investigations of nano-scaled ferromagnetic
Co/Ni/Co single electron transistors. As a result of reduced size, the devices
exhibit single electron transistor characteristics at 4.2K. Magnetotransport
measurements carried out at 1.8K reveal tunneling magnetoresistance (TMR)
traces with negative coercive fields, which we interpret in terms of a
switching mechanism driven by the shape anisotropy of the central wire-like Ni
island. A large TMR of about 18% is observed within a finite source-drain bias
regime. The TMR decreases rapidly with increasing bias, which we tentatively
attribute to excitation of magnons in the central island.Comment: 12 pages (including 4 figures). Accepted for publishing on AP
New Class of Random Matrix Ensembles with Multifractal Eigenvectors
Three recently suggested random matrix ensembles (RME) are linked together by
an exact mapping and plausible conjections. Since it is known that in one of
these ensembles the eigenvector statistics is multifractal, we argue that all
three ensembles belong to a new class of critical RME with multifractal
eigenfunction statistics and a universal critical spectral statitics. The
generic form of the two-level correlation function for weak and extremely
strong multifractality is suggested. Applications to the spectral statistics at
the Anderson transition and for certain systems on the border of chaos and
integrability is discussed.Comment: 4 pages RevTeX, resubmitte
Theory of tunneling spectroscopy in a Mn_12 single-electron transistor by density-functional theory methods
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-ependent matrix elements for use in transport calculations. The tunneling
conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the
excess charge, strongly affect the electronic transport, and can lead to negative differential conductance
Gamma–ray spectroscopy with single–carrier collection in high–resistivity semiconductors
With the standard plane–parallel configuration of semiconductor detectors, good γ–ray spectra can only be obtained when both electrons and holes are completely collected. We show by calculations (and experiments) that with contacts of hemispherical configuration one can obtain γ–ray spectra of adequate resolution and with signal heights of nearly full amplitude even when only one type of carrier is collected. Experiments with CdTe detectors for which the µτ product for electrons is about 10^(3) times that of the holes confirm these calculations. The adoption of hemispherical contacts thus widens the range of high–resistivity semiconductors potentially acceptable for γ–ray detection at room temperature
Distribution of level curvatures for the Anderson model at the localization-delocalization transition
We compute the distribution function of single-level curvatures, , for
a tight binding model with site disorder, on a cubic lattice. In metals
is very close to the predictions of the random-matrix theory (RMT). In
insulators has a logarithmically-normal form. At the Anderson
localization-delocalization transition fits very well the proposed novel
distribution with , which
approaches the RMT result for large and is non-analytical at small . We
ascribe such a non-analiticity to the spatial multifractality of the critical
wave functions.Comment: 4 ReVTeX pages and 4(.epsi)figures included in one uuencoded packag
Antimony doping of Si layers grown by solid-phase epitaxy
We report here that layers of Si formed by solid-phase epitaxial growth (SPEG) can be doped intentionally. The sample consists initially of an upper layer of amorphous Si (~1 µm thick), a very thin intermediate layer of Sb (nominally 5 Å), and a thin lower layer of Pd (~500 Å), all electron-gun deposited on top of a single-crystal substrate (1–10 Ω cm, p type, orientation). After a heating cycle which induces epitaxial growth, electrically active Sb atoms are incorporated into the SPEG layer, as shown by the following facts: (a) the SPEG layer forms a p-n junction against the p-type substrate, (b) the Hall effect indicates strong n-type conduction of the layer, and (c) Auger electron spectra reveal the presence of Sb in the layer
Onset voltage shift due to non-zero Landau ground state level in coherent magnetotransport
Coherent electron transport in double-barrier heterostructures with parallel
electric and magnetic fields is analyzed theoretically and with the aid of a
quantum simulator accounting for 3-dimensional transport effects. The
onset-voltage shift induced by the magnetic field in resonant tunneling diodes,
which was previously attributed to the cyclotron frequency inside the
well is found to arise from an upward shift of the non-zero ground (lowest)
Landau state energy in the entire quantum region where coherent transport takes
place. The spatial dependence of the cyclotron frequency is accounted for and
verified to have a negligible impact on resonant tunneling for the device and
magnetic field strength considered. A correction term for the onset-voltage
shift arising from the magnetic field dependence of the chemical potential is
also derived. The Landau ground state with its nonvanishing finite harmonic
oscillator energy is verified however to be the principal
contributor to the onset voltage shift at low temperatures.Comment: 13 pages, and 3 figures. Accepted for publication in Phys. Rev.
- …
