4 research outputs found
A model of collaborative innovation between local government and tourism operators
[EN] This research proposes a framework for collaborative innovation in a public private partnership by applying techniques that combine quantitative data collection and qualitative depth. It proposes a collaborative model that looks to provide competitive advantage by improving tourist services from two perspectives: from the core of public administration, and from the private tourist sector perspective.Pons Morera, C.; Canós Darós, L.; Gil Pechuán, I. (2017). A model of collaborative innovation between local government and tourism operators. SERVICE BUSINESS. AN INTERNATIONAL JOURNAL. 1-26. doi:10.1007/s11628-017-0341-xS126Anderberg MR (1973) Cluster analysis for applications. Academic Press, New YorkAugustyn K (2000) Performance of tourism partnerships: a focus on York. Tour Manag 2:341–351Aziri B, Nedelea A (2013) Business strategies in tourism. Ecoforum 2(1):9Baglieri D, Consoli R (2009) Collaborative innovation in tourism: managing virtual communities. TQM J 21(4):353–364Barbero MI (2009) Métodos de elaboración de escalas. UNED, MadridBeaumont N, Dredge D (2010) Local tourism governance: a comparison of three network approaches. J Sustain Tourism 18(1):7–28Beritelli P, Bieger T, Laesser C (2007) Destination governance: Using corporate governance theories as a foundation for effective destination management. J Travel Res 46:96–107Bigné JE, Aldás J, Küster I, Vila N (2002) Estableciendo los determinantes de la fidelidad del cliente: Un estudio basado en técnicas cualitativas. Investigación y Mark 77:58–62Bruntland GH (1987) Our common future. http://www.un-documents.net/our-common-future.pdf . Consulted in 2016Buch EB, Cabaleiro R (2011) Hacia la determinación de la condición financiera de la administración publica local. Aplicación a los municipios de la comunidad autónoma de Galicia. Academia, Revista latinoamericana de administración, No. 47, pp. 43–60Burke JG, O’Campo P, Peak GL, Gielen AC, McDonnell KA, Trochim WM (2005) An introduction to concept mapping as a participatory public health research method. Qual Health Res 15(10):1392–1410Bustelo C, García-Morales E (2008) Administración electrónica y gestión documental. Consideraciones a la luz de la ley para el acceso electrónico de los ciudadanos a los servicios públicos. El profesional de la información. Enero-febrero 17(1):106–111Caffyn A, Jobbins G (2003) Governance capacity and stakeholder interactions in the development and management of coastal tourism: examples from Morocco and Tunisia. J Sustain Tourism 11(2):224–245Carlisle S, Kunc M, Jones E, Tiffin S (2013) Supporting innovation for tourism development through multi-stakeholder approaches: experiences from Africa. Tour Manag 35:59–69Clavero J, Codina M, Pérez A, Serrat-Brustenga M (2009) Estudio de caso de servicio de préstamo de libros electrónicos. El profesional de la información. Marzo-abril 18(2):237–241Czernek K (2013) Determinants of cooperation in a tourist region. Ann Tourism Res 40:83–104Dinica V (2009) Governance for sustainable tourism: a comparison of international and dutch visions. Journal of Sustainable Tourism. 17(5):583–603Dredge D, Whitford M (2011) Event tourism governance and the public sphere. J Sustain Tourism 19(4-5):479–499European Directive 2006/7/EC. Bathing Water. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:064:0037:0051:EN:PDF . Consulted in 2016Everitt B (1980) Cluster analysis. New York, NY, Halsted Press, a Division of John Wiley and SonsFernández O (1991) El análisis de Cluster: Aplicación, interpretación y validación. Papers 37:65–76Foundation for Environmental Quality of the European Union. http://www.blueflag.org/menu/awarded-sites/2014/northern-hemisphere/spain-2/List/Beaches . Consulted in 2016Freeman RE, McVea J (1984) A stakeholder approach to strategic management. Pitman, BostonGil-Lafuente AM, Kyun-Oh Y (2012) Incidencia de las inversiones de la administración pública sobre el desarrollo turístico de una ciudad. Revista Venezolana de Gestión Pública. Enero-Diciembre 3(3):81–109Gil-Pechuán I, Conesa-García M, Navarro-García A (2014) Concept mapping to improve higher education. Innovation and Teaching Technologies. ISBN: 978-3-319-04824-6. pp. 61–73Granovetter M (1985) Economic action and social structure: the problem of embeddedness. Am J Sociol 91(3):481Greenwood J (1993) Business interest groups in tourism governance. Tourism Manag 14:335–348Gulati R (1995) Social structure and alliance formation patterns: a longitudinal analysis. Adm Sci Q 40:619–653Henao-Betancur PA, Echeverri-Farley OM, Zartha-Sossa JW (2013) Metodología web para la formulación e implementación de estrategias de innovación en empresas. Rev Gestión de las Personas y Tecnol 16:6Hodge GA, Greve C (2017) On public-private partnership performance: a contemporary review. Public Works Manag Policy 22(1):55–78Hultman J, Hall CM (2012) Tourism place-Making governance of locality in Sweden. Ann Tourism Res 39(2):547–570Khattri N, Miles MB (1994) Cognitive mapping: a review and working guide. Center Policy Res, SparkhillKlodiana G, Dorina K, Engjellushe Z (2012) The role of local government in sustainable development. AUDOE. 8(2):139–155León JA, Zapico F (2003) Usos prácticos sobre la política electrónica en los servicios públicos: el caso de Extremadura. El profesional de la información. Mayo-junio 12(3):232–236Marinao E, Chasco C (2012) Trust in tourist destinations. the role of local inhabitants and institutions. Academia, Revista latinoamericana de administración 51:27–47Marzo-Roselló R, Peris-Pérez P, Ferris-Oñate, Sánchez-Lacuesta J, Matínez-Gómez L, Olaso-Melis J, Garcés-Pérez L, Primo-Capella VJ (2013) La experiencia turística en la ciudad de Valencia. Rev de Biomec 59:63–66Menon S, Manoj E (2014) Public private partnerships in tourism- a case study of Kerala Travel Mart. Afr J Hosp Tour Leisure 3(2):1–7Miranda-Gumucio L, Gil-Pechuán I, Palacios-Marqués D (2013) An exploratory study of the determinants of switching and loyalty in prepaid cell phone users. An application of concept mapping. Serv Bus 7(4):603–622Miret-Pastor L, Segarra-Oña MV (2011) Estudio del clúster turístico de Benidorm a través de indicadores de aglomeración y especialización. Renovación de destinos turísticos consolidados, pp 69–86Miret-Pastor L, Segarra-Oña MV, Hervás-Oliver JL (2009) Un análisis sobre la concentración espacial en el turismo valenciano. Congreso de la Asociación Española de Ciencia Regional. XXXV Reunión de estudios regionales, ValenciaMoscardo G (2011) Exploring social representations of tourism planning: issues for governance. J Sustain Tour 19(4-5):423–436Muñoz-Cañavate A, Chaín Navarro C (2004) La administración local española en internet: estudio cuantitativo de la evolución de los sistemas de información web de los ayuntamientos (1997–2002). Ciencias de la Inf 35(1):43–55Nabitz U, Severens P, Brink WVD, Jansen P (2007) Improving the EFQM model: an empirical study on model development and theory building using concept mapping. Total Qual Manag 12(1):69–81National and Integral Tourism Plan (2012–2015) http://www.minetur.gob.es/turismo/es-ES/PNIT/Documents/Plan%20Nacional%20e%20Integral%20de%20Turismo%20(PNIT)%202012-2015.pdf . Consulted in 2016Nicholson J, Orr K (2016) Local government partnership working: a space odyssey. Or, journeys through the dilemmas of public and private sector boundary-spanning actors. Policy Politics 44(2):269–287Nordin S, Svensson B (2007) Innovative destination governance: the Swedish ski resort of Åre. Entrepr Innov 8(1):53–66Nunkoo R (2015) Tourism development and trust in local government. Tour Manag 46:623–634Pechlaner H, Tschurtschenthaler P (2003) Tourism policy, tourism organisations and change management in Alpine regions and destinations: a european perspective. Curr Issues Tour 6(6):508–539Pfeffer J, Salancik G (1978) The external control of organizations: a resource-dependence perspective. Harper and Row, New YorkPorter ME (1990) The competitive advantage of nations. Harv Bus Rev 68(2):73–93Prahalad CK, Hamel G (1990) The core competence of the corporation. Harv Bus Rev 68(3):79–91Queiroz F, Rastrollo-Horrillo MA (2015) State of art in tourist destination governance. Tour Manag Stud 11(2):47–55. doi: 10.18089/tms.2015.11206Rodríguez MP, López AM, Ortiz D (2010) Implementing the balanced scorecard in public sector agencies: An experience in municipal sport services. Acad Rev latinoam de adm 45:116–139Rooter report (2010) La innovación en servicios en España. www.rooter.es . Consulted in 2016Rosas SR (2005) Concept mapping as a technique for program theory development: an illustration using family support programs. Am J Eval 26(3):389–401Rosas SR, Camphausen LC (2007) The use of concept mapping for scale development and validation in evaluation. Eval Progr Plann 30:125–135Santos M, Ferreira AM, Costa C (2014) Influential factors in the competitiveness of mature tourism destinations. Tour Manag Stud 10(1):73–81Selin S, Chavez D (1994) Characteristics of successful tourism partnerships: a multiple case study design. J Park Recreat Adm 12(2):51–61Selin S, Chavez D (1995) Developing an evolutionary tourism partnership model. Ann Tour Res 22(4):844–856Simpson B (1994) How do women scientists perceive their own career development? Int J Career Manag 6(1):19–27Soler-López MC (2013) Calidad y Rendimiento de Sitios Web de e-Government. Aplicación a la Administración Local. Doctoral thesis. Murcia UniversitySpanish Tourism Plan Horizon (2020) pp. 24 and 43. http://static.hosteltur.com/web/uploads/2011/10/Plan_de_Turismo_Espaol_Horizonte_2020.pdf . Consulted in 2016Toral SL, Barrero F, Martínez MR, Gallardo S, Cortés FJ (2006) Determinación de las variables de diseño en el desarrollo de una herramienta de e-learning. Pixel-Bit, Rev de medios y edu 27:99–113Torres L, Pina V (2001) Public–private partnership and private finance initiatives in the EU and Spanish local governments. Eur Account Rev 10:601–619Trochim WMK (1989) An introduction to concept mapping for planning and evaluation. Eval Progr Plann 12(1):1–16Trochim WMK, Linton R (1986) Conceptualization for planning and evaluation. Eval Progr Plann 9(4):289–308United Nations World Tourism Organization (2005) Making tourism more sustainable. A guide for policy makers, UNEP and UNWTO, pp 11–12. http://sdt.unwto.org/content/about-us-5United Nations World Tourism Organization (2015) UNWTO tourism highlights, p 6. http://www.e-unwto.org/doi/pdf/10.18111/9789284416899Velasco GM (2007) Gestión de destinos: ¿Gobernabilidad del turismo o gobernanza del destino?. Ministerio de educación y ciencia de España. Plan nacional de I + D + I (2004–2007)Wang Y (2008) Collaborative destination marketing: understanding the dynamic process. J Travel Res 47(2):151–166Wang Y, Fesenmaier RD (2007) Collaborative destination marketing: a case study of Elkhart county, Indiana. Tour Manag 28:863–875Wang C, Honggang X (2014) The role of local government and the private sector in China’s tourism industry. Tour Manag 45:95–105Williamson OE (1975) Markets and hierarchies: analysis and antitrust implications. The Free Press, New YorkWood DJ, Gray B (1991) Towards a comprehensive theory of collaboration. J Appl Behav Sci 27:139–162World Travel & Tourism Council (2016) Economic Impact 2016 Spain, p 3. http://www.wttc.org/-/media/files/reports/economic%20impact%20research/countries%202016/spain2016.pdf . Consulted in 2016Zapata MJ, Hall CM (2012) Public–private collaboration in the tourist sector: balancing legitimacy and effectiveness in local tourism partnerships. The Spanish case. J Policy Res Tour Leisure Events 4(1):61–8
Transparent fuzzy logic based methods for some human resource problems
Personnel selection and reallocation are human resources policies that should be planned andimplemented accurately because of their importance to the future of the company. When a person is hired, he or sherepresents an investment in human capital. This is the reason because managers have to use different tools in order tomake good decisions. In this paper we present some fuzzy tools for personnel selection and reallocation processes andthe advantages and disadvantages of their applying. Moreover, we show some examples, including the use of a specific software
Un algoritmo para el cálculo del conjunto dominante finito del problema generalizado de la p-centdiana
Los problemas de localización tratan de averiguar la ubicación de las instalaciones de una empresa de modo que se minimicen los costes o se maximicen los beneficios. Dos de los modelos más utilizados en ocalización en redes son el problema de la p-mediana y el problema del p-centro. El primero consiste en minimizar la suma total de las distancias ponderadas, mientras que el segundo trata de minimizar la máxima distancia ponderada desde un centro de servicio hasta sus usuarios asignados. El objetivo del problema de la p-mediana hace que sea eficiente pero no equitativo, mientras que la cota implícita en el problema del p-centro lo convierte en equitativo pero no eficiente. Para combinar ambos aspectos, aparece en la década de los 70 un nuevo problema, el de la p-centdiana, cuya función objetivo es una mezcla de las dos anteriores. En este trabajo consideramos el problema generalizado de la p-centdiana sobre una red en la que los pesos asociados al p-centro y a la p-mediana no son necesariamente iguales. Mientras que los conjuntos dominantes finitos de los dos primeros problemas son relativamente sencillos de calcular, esto no es así para la p-centdiana generalizada. Proponemos un algoritmo que nos permitirá calcular este conjunto
A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria
Job rotation is an organizational strategy increasingly used in manufacturing systems as it provides benefits to both workers and management in an organization. Job rotation prevents musculoskeletal disorders, eliminates boredom and increases job satisfaction and morale. As a result, the company gains a skilled and motivated workforce, which leads to increases in productivity, employee loyalty and decreases in employee turnover. A multi-criteria genetic algorithm is employed to generate job rotation schedules, with considering the most adequate employee-job assignments to prevent musculoskeletal disorders caused by accumulation of fatigue. The algorithm provides the best adequacy available between workers and the competences needed for performing the tasks. The design of the rotation schedules is based not only on ergonomic criteria but also on issues related to product quality and employee satisfaction. The model includes the workers' competences as a measure for the goodness of solutions. © 2011 Springer-Verlag.We thank the Universidad Politecnica de Valencia for its support of this research through its Research and Development Program 2009 and financing through the project PAID-06-09/2902. The Universidad Politecnica de Valencia has funded the translation of this work.Asensio Cuesta, S.; Diego Más, JA.; Canós Darós, L.; Andrés Romano, C. (2012). A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria. International Journal of Advanced Manufacturing Technology. 60(9-12):1161-1174. doi:10.1007/s00170-011-3672-0S11611174609-12Podniece Z (2008) Work-related musculoskeletal disorders: prevention report. European Agency for Safety and Health at Work, BelgiumBernard B, Sauter S, Fine LJ, Petersen I, Hales T (1994) Job task and psychosocial risk factors for work-related musculoskeletal disorders among new paper employees. Scand J Work Environ Health 20:417–426Emodi T, Zhang WJ, Lang SYT, Bi ZM (2007) A framework for modeling and analysis of human repetitive operations in a production assembly line. International SAE Digital Human Modeling for Design and Engineering Conference And Exhibition, University District Seattle, Washington, USAHuang HJ (1999) Job rotation from the employees’ point of view. Res Hum R M 7:75–85Eriksson T, Ortega J (2006) The adoption of job rotation: testing the theories. Ind Labor Relat Rev 59:653–666Azizi N, Zolfaghari S, Liang M (2010) Modeling job rotation in manufacturing systems: the study of employee’s boredom and skill variations. Int J Prod Econ 123:69–85Cunningham BJ, Eberle T (1990) A guide to job enrichment and redesign. Personnel 67:56–61Rissen D, Melin B, Sandsjö L, Dohns I, Lundberg U (2002) Psychophysiological stress reactions, trapezius muscle activity, and neck and shoulder pain among female cashiers before and after introduction of job rotation. Work Stress 16:127–137Jonsson B (1988) Electromyographic studies of job rotation. Scand J Work Environ Health 14:108–109Hazzard L, Mautz J, Wrightsman D (1992) Job rotation cuts cumulative trauma cases. Personnel 71:29–32Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Dover, New YorkCarnahan BJ, Redfern MS, Norman B (2000) Designing safe job rotation schedules using optimization and heuristic search. Ergonomics 43:543–560Tharmmaphornphilas W, Norman B (2004) A quantitative method for determining proper job rotation intervals. Ann Oper Res 128:251–266Yaoyuenyong S, Nanthavanij S (2006) Hybrid procedure to determine optimal workforce without noise hazard exposure. Comput Ind Eng 51:743–764Costa AM, Miralles C (2009) Job rotation in assembly lines employing disabled workers. Int J Prod Econ 120:625–632Aryanezhad MB, Kheirkhah V, Deljoo V, Mirzapour Al-e-hashem SMJ (2009) Designing safe job rotation schedules based upon workers skills. Int J Adv Manuf Technol 41:193–199Tharmmaphornphilas W, Norman BA (2007) A methodology to create robust job rotation schedules. Ann Oper Res 155:339–360Nanthavanij S, Kullpattaranirun T (2001) A genetic algorithm approach to determine minimax work assignments. Int J Ind Eng Theor 8:176–185Kullpattaranirun T, Nanthavanij S (2005) A heuristic genetic algorithm for solving complex safety-based work assignment problems. Int J Ind Eng Theor 12:45–57Diego-Mas JA, Asensio-Cuesta S, Sanchez-Romero MA, Artacho-Ramirez MA (2009) A multi-criteria genetic algorithm for the generation of job rotation schedules. Int J Ind Ergon 39:23–33Seçkiner SU, Kurt M (2007) A simulated annealing approach to the solution of job rotation scheduling problems. Appl Math Comput 188:31–45Seçkiner SU, Kurt M (2008) Ant colony optimization for the job rotation scheduling problem. Appl Math Comput 201:149–160Spencer L, Spencer S (1993) Competence at work: models for superior performance. Wiley, New YorkAshkanasy NM, Hartel CEJ, Daus CS (2002) Diversity and emotion: the new frontiers in organizational behavior and research. J Manag 28:307–338Triggs DD, King PM (2000) Job rotation: an administrative strategy for hazard control. Prof Saf 45:32–34Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MichiganEmodi T, Zhang WJ (2008) Injury analysis in assembly and production lines: a state of the art review. Int J Ergon Hum Factors 30:11–38Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13:533–549Chambers LD (1995) Practical handbook of genetic algorithms: new frontiers, 1st edn. CRC, Boca Raton, FloridaChambers LD (1998) Practical handbook of genetic algorithms: complex coding system, 1st edn. CRC, Boca Raton, FloridaChambers LD (2000) Practical handbook of genetic algorithms: applications, 2nd edn. CRC, Boca Raton, FloridaDavis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New YorkGoldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, MassachusettsRodgers SH (1986) Ergonomic design for people at work. Van Nostrand Reinhold, New YorkRodgers SH (1992) A functional job analysis technique. Occup Med State Art 7:679–711Waters TR, Putz-Anderson V, Garg A, Fine LJ (1993) Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 7:749–776McAtamney L, Corlett EN (1993) RULA: A survey method for the investigation of work-related upper limb disorders. Appl Ergon 24:91–9