67 research outputs found
Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.
BACKGROUND: Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants. RESULTS: We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP) were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms. CONCLUSION: Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom
From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing
Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner’s syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner’s syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed
Dynamic Chromatin Localization of Sirt6 Shapes Stress- and Aging-Related Transcriptional Networks
The sirtuin Sirt6 is a NAD-dependent histone deacetylase that is implicated in gene regulation and lifespan control. Sirt6 can interact with the stress-responsive transcription factor NF-κB and regulate some NF-κB target genes, but the full scope of Sirt6 target genes as well as dynamics of Sirt6 occupancy on chromatin are not known. Here we map Sirt6 occupancy on mouse promoters genome-wide and show that Sirt6 occupancy is highly dynamic in response to TNF-α. More than half of Sirt6 target genes are only revealed upon stress-signaling. The majority of genes bound by NF-κB subunit RelA recruit Sirt6, and dynamic Sirt6 relocalization is largely driven in a RelA-dependent manner. Integrative analysis with global gene expression patterns in wild-type, Sirt6−/−, and double Sirt6−/− RelA−/− cells reveals the epistatic relationships between Sirt6 and RelA in shaping diverse temporal patterns of gene expression. Genes under the direct joint control of Sirt6 and RelA include several with prominent roles in cell senescence and organismal aging. These data suggest dynamic chromatin relocalization of Sirt6 as a key output of NF-κB signaling in stress response and aging
Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast
<p>Abstract</p> <p>Background</p> <p>Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence.</p> <p>Results</p> <p>In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice.</p> <p>Conclusion</p> <p>Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence.</p
Barriers to Non-Viral Vector-Mediated Gene Delivery in the Nervous System
Efficient methods for cell line transfection are well described, but, for primary neurons, a high-yield method different from those relying on viral vectors is lacking. Viral transfection has several drawbacks, such as the complexity of vector preparation, safety concerns, and the generation of immune and inflammatory responses when used in vivo. However, one of the main problems for the use of non-viral gene vectors for neuronal transfection is their low efficiency when compared with viral vectors. Transgene expression, or siRNA delivery mediated by non-viral vectors, is the result of multiple processes related to cellular membrane crossing, intracellular traffic, and/or nuclear delivery of the genetic material cargo. This review will deal with the barriers that different nanoparticles (cationic lipids, polyethyleneimine, dendrimers and carbon nanotubes) must overcome to efficiently deliver their cargo to central nervous system cells, including internalization into the neurons, interaction with intracellular organelles such as lysosomes, and transport across the nuclear membrane of the neuron in the case of DNA transfection. Furthermore, when used in vivo, the nanoparticles should efficiently cross the blood-brain barrier to reach the target cells in the brain
Heparan Sulfate Glycosaminoglycans Are Receptors Sufficient To Mediate the Initial Binding of Adenovirus Types 2 and 5
Cell infection by adenovirus serotypes 2 and 5 (Ad2/5) initiates with the attachment of Ad fiber to the coxsackievirus and Ad receptor (CAR) followed by α(v) integrin-mediated entry. We recently demonstrated that heparan sulfate glycosaminoglycans (HS GAGs) expressed on cell surfaces are involved in the binding and infection of Ad2/5 (M. C. Dechecchi, A. Tamanini, A. Bonizzato, and G. Cabrini, Virology 268:382–390, 2000). The role of HS GAGs was investigated using extracellular soluble domain 1 of CAR (sCAR-D1) and heparin as soluble receptor analogues of CAR and HS GAGs in A549 and recombinant CHO cell lines with differential levels of expression of the two receptors and cultured to various densities. Complete inhibition of binding and infection was obtained by preincubating Ad2/5 with both heparin (10 μg/ml) and sCAR-D1 (200 μg/ml) in A549 cells. Partial inhibition was observed when heparin and sCAR-D1 were preincubated separately with Ad. The level of heparin-sensitive [(3)H]Ad2/5 binding doubled in sparse A549 cells (50 to 70,000 cells/cm(2)) with respect to that of cells grown to confluence (200 to 300,000 cells/cm(2)), in parallel with increased expression of HS GAGs. [(3)H]Ad2 bound to sparse CAR-negative CHO cells expressing HS GAGs (CHO K1). No [(3)H]Ad2 binding was observed in CHO K1 cells upon competitive inhibition with heparin and in HS GAG-defective CHO A745, D677, and E606 clones. HS-sensitive Ad2 infection was obtained in CAR-negative sparse CHO K1 cells but not in CHO A745 cells, which were permissive to infection only upon transfection with CAR. These results demonstrate that HS GAGs are sufficient to mediate the initial binding of Ad2/5
- …