15 research outputs found

    A novel strategy for molecular interfaces optimization: the case of ferritin-transferrin receptor interaction

    Get PDF
    Protein-protein interactions regulate almost all cellular functions and rely on a fine tune of surface amino acids properties involved on both molecular partners. The disruption of a molecular association can be caused even by a single residue mutation, often leading to a pathological modification of a biochemical pathway. Therefore the evaluation of the effects of amino acid substitutions on binding, and the ad hoc design of protein-protein interfaces, is one of the biggest challenges in computational biology. Here, we present a novel strategy for computational mutation and optimization of protein-protein interfaces. Modeling the interaction surface properties using the Zernike polynomials, we describe the shape and electrostatics of binding sites with an ordered set of descriptors, making possible the evaluation of complementarity between interacting surfaces. With a Monte Carlo approach, we obtain protein mutants with controlled molecular complementarities. Applying this strategy to the relevant case of the interaction between Ferritin and Transferrin Receptor, we obtain a set of Ferritin mutants with increased or decreased complementarity. The extensive molecular dynamics validation of the method results confirms its efficacy, showing that this strategy represents a very promising approach in designing correct molecular interfaces

    Biodistribution PET/CT study of hemoglobin-DFO-89Zr complex in healthy and lung tumor-bearing mice

    Get PDF
    Proteins, as a major component of organisms, are considered the preferred biomaterials for drug delivery vehicles. Hemoglobin (Hb) has been recently rediscovered as a potential drug carrier, but its use for biomedical applications still lacks extensive investigation. To further explore the possibility of utilizing Hb as a potential tumor targeting drug carrier, we examined and compared the biodistribution of Hb in healthy and lung tumor-bearing mice, using for the first time89 Zr labelled Hb in a positron emission tomography (PET) measurement. Hb displays a very high conjugation yield in its fast and selective reaction with the maleimide-deferoxamine (DFO) bifunctional chelator. The high-resolution X-ray structure of the Hb-DFO complex demonstrated that cysteine β93 is the sole attachment moiety to the αβ-protomer of Hb. The Hb-DFO complex shows quantitative uptake of89 Zr in solution as determined by radiochromatography. Injection of 0.03 mg of Hb-DFO-89 Zr complex in healthy mice indicates very high radioactivity in liver, followed by spleen and lungs, whereas a threefold increased dosage results in intensification of PET signal in kidneys and decreased signal in liver and spleen. No difference in biodistribution pattern is observed between naïve and tumor-bearing mice. Interestingly, the liver Hb uptake did not decrease upon clodronate-mediated macrophage depletion, indicating that other immune cells contribute to Hb clearance. This finding is of particular interest for rapidly developing clinical immunology and projects aiming to target, label or specifically deliver agents to immune cells

    Neuroglobin, clues to function and mechanism

    No full text
    Neuroglobin is expressed in vertebrate brain and belongs to a branch of the globin family that diverged early in evolution. Sequence conservation and presence in nervous cells of several taxa suggests a relevant role in the nervous system, with tight structural restraints. Twenty years after its discovery, a rich scientific literature provides convincing evidence of the involvement of neuroglobin in sustaining neuron viability in physiological and pathological conditions however, a full and conclusive picture of its specific function, or set of functions is still lacking. The difficulty of unambiguously assigning a precise mechanism and biochemical role to neuroglobin might arise from the participation to one or more cell mechanism that redundantly guarantee the functioning of the highly specialized and metabolically demanding central nervous system of vertebrates. Here we collect findings and hypotheses arising from recent biochemical, biophysical, structural, in cell and in vivo experimental work on neuroglobin, aiming at providing an overview of the most recent literature. Proteins are said to have jobs and hobbies, it is possible that, in the case of neuroglobin, evolution has selected for it more than one job, and support to cover for its occasional failings. Disentangling the mechanisms and roles of neuroglobin is thus a challenging task that might be achieved by considering data from different disciplines and experimental approaches

    Resonant broadband stimulated Raman scattering in myoglobin

    No full text
    Spontaneous Raman is a well-established tool to probe molecular vibrations. Under resonant conditions, it is a largely used method for characterizing the structure of heme-proteins. In recent years, advances in pulsed laser sources allowed to explore vibrational features with complex techniques based on nonlinear optical interactions, among which is stimulated Raman scattering (SRS). Building on its combined spectral–temporal resolutions and high chemical sensitivities, SRS has been largely applied as a probe for ultrafast, time-resolved studies, as well as an imaging technique in biological systems. By using a frequency tunable, narrowband pump pulse jointly with a femtosecond white light continuum to initiate the SRS process, here we measure the Raman spectrum of a prototypical heme-protein, namely deoxy myoglobin, under two different electronic resonances. The SRS results are compared with the spontaneous Raman spectra, and the relative advantages, such as the capability of our experimental approach to provide an accurate mapping of Raman excitation profiles, are discussed

    Engineering the internal cavity of neuroglobin demonstrates the role of the haem-sliding mechanism

    No full text
    Neuroglobin is a member of the globin family involved in neuroprotection; it is primarily expressed in the brain and retina of vertebrates. Neuroglobin belongs to the heterogeneous group of hexacoordinate globins that have evolved in animals, plants and bacteria that are endowed with the capability of reversible intramolecular coordination, allowing the binding of small gaseous ligands (O2, NO and CO). In a unique fashion among haemoproteins, ligand-binding events in neuroglobin are dependent on the sliding of the haem itself within a preformed internal cavity, as revealed by the crystal structure of its CO-bound derivative. Point mutants of the neuroglobin internal cavity have been engineered and their functional and structural characterization shows that hindering the haem displacement leads to a decrease in CO affinity, whereas reducing the cavity volume without interfering with haem sliding has negligible functional effects.Neuroglobin is a member of the globin family involved in neuroprotection; it is primarily expressed in the brain and retina of vertebrates. Neuroglobin belongs to the heterogeneous group of hexacoordinate globins that have evolved in animals, plants and bacteria, endowed with the capability of reversible intramolecular coordination, allowing the binding of small gaseous ligands (O2, NO and CO). In a unique fashion among haemoproteins, ligand-binding events in neuroglobin are dependent on the sliding of the haem itself within a preformed internal cavity, as revealed by the crystal structure of its CO-bound derivative. Point mutants of the neuroglobin internal cavity have been engineered and their functional and structural characterization shows that hindering the haem displacement leads to a decrease in CO affinity, whereas reducing the cavity volume without interfering with haem sliding has negligible functional effects

    Point mutations at a key site alter the cytochrome P450 oleP structural dynamics

    No full text
    Substrate binding to the cytochrome P450 OleP is coupled to a large open-to-closed transition that remodels the active site, minimizing its exposure to the external solvent. When the aglycone substrate binds, a small empty cavity is formed between the I and G helices, the BC loop, and the substrate itself, where solvent molecules accumulate mediating substrate-enzyme interactions. Herein, we analyzed the role of this cavity in substrate binding to OleP by producing three mutants (E89Y, G92W, and S240Y) to decrease its volume. The crystal structures of the OleP mutants in the closed state bound to the aglycone 6DEB showed that G92W and S240Y occupied the cavity, providing additional contact points with the substrate. Conversely, mutation E89Y induces a flipped-out conformation of this amino acid side chain, that points towards the bulk, increasing the empty volume. Equilibrium titrations and molecular dynamic simulations indicate that the presence of a bulky residue within the cavity impacts the binding properties of the enzyme, perturbing the conformational space explored by the complexes. Our data highlight the relevance of this region in OleP substrate binding and suggest that it represents a key substrate-protein contact site to consider in the perspective of redirecting its activity towards alternative compounds
    corecore