7,371 research outputs found
Grid tool integration within the eMinerals Project
In this article we describe the eMinerals mini grid, which is now running in production mode. Thisis an integration of both compute and data components, the former build upon Condor, PBS and thefunctionality of Globus v2, and the latter being based on the combined use of the Storage ResourceBroker and the CCLRC data portal. We describe how we have integrated the middleware components,and the different facilities provided to the users for submitting jobs within such an environment. We willalso describe additional functionality we found it necessary to provide ourselves
Recommended from our members
Strategies for Refining IEC 61400-2: Wind Turbine Generator Systems - Part 2: Safety of Small Wind Turbines: Preprint
This paper provides a status of the changes currently being made by IEC Maintenance Team 02 (MT02) to the existing IEC 61400-2 ''Safety of small wind turbines.'' In relation to the work done by IEC MT02, work has been done by NREL and Windward Engineering under the DOE/NREL Small Wind Turbine (SWT) Project. Aeroelastic models were built and measurements taken on a Whisper H40 turbine and an AOC 15/50. Results from this study were used to verify the simple design equations. This verification will be used to evaluate how changes made in the design load estimation section of the standard work out for a broad range of turbine configurations. The work presented here builds on work performed by Van Hulle (1996)
The reliability of the patellotrochlear index on magnetic resonance imaging for measuring patellofemoral height
Background: The purpose of this study was to determine the inter-and intra-observer reliability of the patellotrochlear index (PTI) on magnetic resonance images (MRI) in patients with patellofemoral pain. The correlation between the PTI measured on MRI and the modified Insall-Salvati (MIS) ratio measured on radiographs was also assessed. Methods: The PTI was assessed on MRI images and the MIS ratio on radiographs of 66 knees of 62 patients. Assessment was performed by two orthopaedic surgeons, one orthopaedic surgery registrar, two radiologists and one radiology registrar. Correlation coefficients, standard errors of measurement and limits of agreement were calculated for the PTI. To assess the association between the PTI and the MIS ratio, the Pearson's correlation coefficient was calculated. Results: The PTI showed good interobserver reliability (intraclass correlation coefficient (ICC) 0.79; 95% confidence interval (CI) 0.73-0.85) and excellent intra-observer reliability (ICC 0.90; 95% CI 0.89-0.91). The standard error of measurement was 0.05 and limits of agreement with the mean +/- 0.09. A very weak and not significant correlation was found between the PTI and the MIS (r = 0.02; P = 0.77). Conclusions: The PTI showed good interobserver reliability and excellent intra-observer reliability. In order to conclude which measurement method of assessing patellar height is truly the most reliable, future studies should investigate agreement parameters (standard error of measurement, limits of agreement) besides solely correlation coefficients. We found a very weak correlation between the PTI and the MIS which suggests that at least one index has poor validity. Future validity studies on indices to assess patellar height are necessary. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Effective representation of RT-LOTOS terms by finite time petri nets
The paper describes a transformational approach for the
specification and formal verification of concurrent and real-time systems. At upper level, one system is specified using the timed process algebra RT-LOTOS. The output of the proposed transformation is a Time Petri net (TPN). The paper particularly shows how a TPN can be automatically constructed from an RT-LOTOS specification using a compositionally defined mapping. The proof of the translation consistency is sketched in the paper and developed in [1]. The RT-LOTOS to TPN translation patterns formalized in the paper are being implemented. in a prototype tool. This enables reusing TPNs verification techniques and tools for the profit of RT-LOTOS
Seasonal evaluation of the land surface scheme HTESSEL against remote sensing derived energy fluxes of the Transdanubian region in Hungary
The skill of the land surface model HTESSEL is assessed to reproduce evaporation in response to land surface characteristics and atmospheric forcing, both being spatially variable. Evaporation estimates for the 2005 growing season are inferred from satellite observations of the Western part of Hungary and compared to model outcomes. Atmospheric forcings are obtained from a hindcast run with the Regional Climate Model RACMO2. Although HTESSEL slightly underpredicts the seasonal evaporative fraction as compared to satellite estimates, the mean, 10th and 90th percentile of this variable are of the same magnitude as the satellite observations. The initial water as stored in the soil and snow layer does not have a significant effect on the statistical properties of the evaporative fraction. However, the spatial distribution of the initial soil and snow water significantly affects the spatial distribution of the calculated evaporative fraction and the models ability to reproduce evaporation correctly in low precipitation areas in the considered region. HTESSEL performs weaker in dryer areas. In Western Hungary these areas are situated in the Danube valley, which is partly covered by irrigated cropland and which also may be affected by shallow groundwater. Incorporating (lateral) groundwater flow and irrigation, processes that are not included now, may improve HTESSELs ability to predict evaporation correctly. Evaluation of the model skills using other test areas and larger evaluation periods is needed to confirm the results. <br><br> Based on earlier sensitivity analysis, the effect of a number of modifications to HTESSEL has been assessed. A more physically based reduction function for dry soils has been introduced, the soil depth is made variable and the effect of swallow groundwater included. However, the combined modification does not lead to a significantly improved performance of HTESSEL
On SIC-POVMs in Prime Dimensions
The generalized Pauli group and its normalizer, the Clifford group, have a
rich mathematical structure which is relevant to the problem of constructing
symmetric informationally complete POVMs (SIC-POVMs). To date, almost every
known SIC-POVM fiducial vector is an eigenstate of a "canonical" unitary in the
Clifford group. I show that every canonical unitary in prime dimensions p > 3
lies in the same conjugacy class of the Clifford group and give a class
representative for all such dimensions. It follows that if even one such
SIC-POVM fiducial vector is an eigenvector of such a unitary, then all of them
are (for a given such dimension). I also conjecture that in all dimensions d,
the number of conjugacy classes is bounded above by 3 and depends only on d mod
9, and I support this claim with computer computations in all dimensions < 48.Comment: 6 pages, no figures. v3 Refs added, improved discussion of previous
work. Ref to a proof of the main conjecture also adde
Satellites of the largest Kuiper Belt objects
We have searched the four brightest objects in the Kuiper Belt for the presence of satellites using the newly commissioned Keck Observatory Laser Guide Star Adaptive Optics system. Satellites are seen around three of the four objects: Pluto (whose satellite Charon is well-known and whose recently discovered smaller satellites are too faint to be detected), 2003 EL61 (where a second satellite is seen in addition to the previously known satellite), and 2003 UB313 (where a satellite is seen for the first time). The object 2005 FY9, the brightest Kuiper Belt object (KBO) after Pluto, does not have a satellite detectable within 0".4 with a brightness of more than 1% of the primary. The presence of satellites around three of the four brightest KBOs is inconsistent with the fraction of satellites in the Kuiper Belt at large at the 99.2% confidence level, suggesting a different formation mechanism for these largest KBO satellites. The two satellites of 2003 EL61, and the one satellite of 2003 UB313, with fractional brightnesses of 5% and 1.5%, and 2%, of their primaries, respectively, are significantly fainter relative to their primaries than other known KBO satellites, again pointing to possible differences in their origin
Bounding the mass of the graviton using gravitional-wave observations of inspiralling compact binaries
If gravitation is propagated by a massive field, then the velocity of
gravitational waves (gravitons) will depend upon their frequency and the
effective Newtonian potential will have a Yukawa form. In the case of
inspiralling compact binaries, gravitational waves emitted at low frequency
early in the inspiral will travel slightly slower than those emitted at high
frequency later, modifying the phase evolution of the observed inspiral
gravitational waveform, similar to that caused by post-Newtonian corrections to
quadrupole phasing. Matched filtering of the waveforms can bound such
frequency-dependent variations in propagation speed, and thereby bound the
graviton mass. The bound depends on the mass of the source and on noise
characteristics of the detector, but is independent of the distance to the
source, except for weak cosmological redshift effects. For observations of
stellar-mass compact inspiral using ground-based interferometers of the
LIGO/VIRGO type, the bound on the graviton Compton wavelength is of the order
of km, about double that from solar-system tests of Yukawa
modifications of Newtonian gravity. For observations of super-massive black
hole binary inspiral at cosmological distances using the proposed laser
interferometer space antenna (LISA), the bound can be as large as km. This is three orders of magnitude weaker than model-dependent
bounds from galactic cluster dynamics.Comment: 8 pages, RevTeX, submitted to Phys. Rev.
An Upper Mass Limit on a Red Supergiant Progenitor for the Type II-Plateau Supernova SN 2006my
We analyze two pre-supernova (SN) and three post-SN high-resolution images of
the site of the Type II-Plateau supernova SN 2006my in an effort to either
detect the progenitor star or to constrain its properties. Following image
registration, we find that an isolated stellar object is not detected at the
location of SN 2006my in either of the two pre-SN images. In the first, an
I-band image obtained with the Wide-Field and Planetary Camera 2 on board the
Hubble Space Telescope, the offset between the SN 2006my location and a
detected source ("Source 1") is too large: > 0.08", which corresponds to a
confidence level of non-association of 96% from our most liberal estimates of
the transformation and measurement uncertainties. In the second, a similarly
obtained V-band image, a source is detected ("Source 2") that has overlap with
the SN 2006my location but is definitively an extended object. Through
artificial star tests carried out on the precise location of SN 2006my in the
images, we derive a 3-sigma upper bound on the luminosity of a red supergiant
that could have remained undetected in our pre-SN images of log L/L_Sun = 5.10,
which translates to an upper bound on such a star's initial mass of 15 M_Sun
from the STARS stellar evolutionary models. Although considered unlikely, we
can not rule out the possibility that part of the light comprising Source 1,
which exhibits a slight extension relative to other point sources in the image,
or part of the light contributing to the extended Source 2, may be due to the
progenitor of SN 2006my. Only additional, high-resolution observations of the
site taken after SN 2006my has faded beyond detection can confirm or reject
these possibilities.Comment: Minor text changes from Version 1. Appendix added detailing the
determination of confidence level of non-association of point sources in two
registered astronomical image
Strong nonlocality: A trade-off between states and measurements
Measurements on entangled quantum states can produce outcomes that are
nonlocally correlated. But according to Tsirelson's theorem, there is a
quantitative limit on quantum nonlocality. It is interesting to explore what
would happen if Tsirelson's bound were violated. To this end, we consider a
model that allows arbitrary nonlocal correlations, colloquially referred to as
"box world". We show that while box world allows more highly entangled states
than quantum theory, measurements in box world are rather limited. As a
consequence there is no entanglement swapping, teleportation or dense coding.Comment: 11 pages, 2 figures, very minor change
- …